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Why Do We Need High-Fidelity Models?

For better decision-making capability!

Using models, we can access non measurable information 

(e.g., stress).

Particular operational conditions (e.g., explosions, earthquakes) 

that are difficult/impossible/dangerous to reproduce 

experimentally can be simulated.
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AIRBUS A350XWB
Govers et al., ISMA 2014.



Why Do We Need High-Fidelity Models?

But also to:

• Reduce dependence on testing (cost and time issues)

• Test design (e.g., sensor and actuator placement)

• Perform virtual prototyping: 

A model can predict the behavior of a structure before its 

construction.

The parameters of a model can easily be modified to  improve the 

design (optimization).
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Different Approaches to Model Nonlinear Structures 

1. Large displacements and rotations

Displacement: 

Cauchy strain tensor:
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𝐮 = 𝐱 − 𝐗

𝜖𝑖𝑗
𝐶 =

1

2

𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖

Small displacements and rotations. 



Different Approaches to Model Nonlinear Structures 

1. Large displacements and rotations

Displacement: 

Cauchy strain tensor:
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𝐮 = 𝐱 − 𝐗

𝜖𝑖𝑗
𝐶 =

1

2

𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖

Small displacements and rotations. 

Not invariant under rigid-body 

motion. Cauchy strains cannot be 

used if rotation amplitudes are finite.

Prof. O. Brüls, ULiège



Different Approaches to Model Nonlinear Structures 

1. Large displacements and rotations

Displacement: 

Green strain tensor:
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𝐮 = 𝐱 − 𝐗

𝜖𝑖𝑗
𝐺 =

1

2

𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖
+෍

𝑘=1

3
𝜕𝑢𝑘
𝜕𝑋𝑖

𝜕𝑢𝑘
𝜕𝑋𝑗

Large displacements and rotations.

Nonlinear measure of deformation. Geometrical nonlinearities

can be considered in the elastic force model.



Different Approaches to Model Nonlinear Structures 

1. Large displacements and rotations
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Deployable space structure
Prof. O. Brüls, ULiège

Landing gear mechanism
Prof. O. Brüls, ULiège



Different Approaches to Model Nonlinear Structures 

2. Large deformations

Nonlinear constitutive laws

Plasticity/Irreversibility

Contacts/Impacts
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Different Approaches to Model Nonlinear Structures 

2. Large deformations
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Buckling of blade in LP compressor
Prof. J.-P. Ponthot, ULiège

Fan Blade containment test
Prof. J.-P. Ponthot, ULiège



Different Approaches to Model Nonlinear Structures 

3. Linear structure with localized nonlinearities

11

FOCUS OF THIS COURSE



Different Ways to Model Nonlinear Structures 

High-fidelity and fast-running modeling

of structures with localized nonlinearities
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Integration of Data-Driven and Computer-Aided Models

What
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Nonlinear 

element

Relative displacement

R
e
s
to

ri
n
g
 f

o
rc

e

Accurate modeling of localized nonlinearities identified 

from experimental data (see next lectures).



Development of Fast-Running Models

Finite element models may involve thousands (even millions) of 

degrees of freedom (DOFs).

For structures with localized nonlinearities, only a few DOFs

are generally involved in nonlinear connections.

Model reduction and substructuring can be applied to 

speed up simulations.
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Model Reduction and Substructuring

Reminders from “Mechanical vibrations: Theory and 

Applications to Structural Dynamics” (Géradin and Rixen):

Reduction: In most cases, engineers are interested in a smaller 

system capturing only lower frequency dynamics. In this case, 

a genuine reduction is performed, the reduction method being 

seen as a DOF economizer.

Substructuring: In the context of large projects, the analysis is 

frequently subdivided into several parts. A separate model is 

constructed for each part of the system and reduced (super-

element). The different parts and super-elements are finally 

combined to simulate the dynamics of the whole system.
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Model Reduction and Substructuring

Most methods for reducing the size 𝑛 of a system consist in 

partitioning the degrees of freedom into 𝑛𝑅 dynamic

retained coordinates (𝑛𝑅 << 𝑛) and 𝑛𝐶 condensed coordinates.

The dynamical behavior of the structure is usually described by 

the retained coordinates only.
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𝐱 =
𝐱𝑅
𝐱𝐶

𝐊 =
𝐊𝑅𝑅 𝐊𝑅𝐶

𝐊𝐶𝑅 𝐊𝐶𝐶
𝐌 =

𝐌𝑅𝑅 𝐌𝑅𝐶

𝐌𝐶𝑅 𝐌𝐶𝐶

The original finite element model is governed by

𝐌 ሷ𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟ext(𝑡)



Craig-Bampton Method

Let us consider a substructure which is connected to the rest of 

the system by a set of boundary degrees of freedom 𝐱𝑅.

The originality of the method is to consider in the condensation, 

in addition to the boundary DOFs 𝐱𝑅, the contribution of the 

internal vibration modes to the reduced model.
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Boundary DOFs 𝐱𝑅

Internal DOFs 𝐱𝐶



Craig-Bampton Method

The dynamical behavior of a substructure is fully described by:

• the static boundary modes resulting from the static 

condensation,

• the subsystem eigenmodes in clamped boundary 

configuration.
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Static mode Vibration mode



Craig-Bampton Method

Accordingly, it means that the following transformation may be

applied to the initial degrees of freedom:

where the Guyan’s reduction matrix has been complemented 

by the set of 𝑛𝐶 internal vibration modes ෤𝐱 obtained by solving:
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𝐱 =
𝐈 𝟎

−𝐊𝐶𝐶
−1𝐊𝐶𝑅 𝚽𝐶

𝐱𝑅
𝐲𝐶

𝑛𝑅 boundary DOFs

𝑛𝐶 intensity parameters

of the internal modes

𝐊𝐶𝐶 − ෥𝜔2𝐌𝐶𝐶 ෤𝐱 = 𝟎

𝚽𝑪 = ෤𝐱(1) … ෤𝐱(𝑛𝐶)



Craig-Bampton Method

In practice, only a certain number 𝑚 < 𝑛𝐶 of internal vibration

modes are kept:

This subset of internal vibration modes should be selected in 

order to cover a frequency range that is large enough to 

approximate the dynamics in play. Convergence of the 

reduced-order model should be carefully assessed!
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𝚽𝐶 → 𝚽𝑚 = ෤𝐱(1) … ෤𝐱(𝑚)

𝐲𝐶 → 𝐲𝑚



Craig-Bampton Method

Final reduction matrix of dimension 𝑛 × 𝑛𝑅 +𝑚 :

Reduced stiffness and mass matrices:

Under the assumption of proportional damping, reduced 

damping matrix can be defined as
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𝐑 =
𝐈 𝟎

−𝐊𝐶𝐶
−1𝐊𝐶𝑅 𝚽𝑚

ഥ𝐊 = 𝐑𝑇𝐊𝐑 ഥ𝐌 = 𝐑𝑇𝐌𝐑

ത𝐂 = 𝛼ഥ𝐊 + βഥ𝑴



Including Localized Nonlinearities into the Model
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𝑖 𝑗

𝑙(𝐱)

A nonlinearity is activated if it is strained (Δ𝑙 𝐱 ≠ 0)

Δ𝑙 𝐱 = 𝑙 𝐱 − 𝑙(𝟎)

It is generally defined by a functional form and a coefficient

𝜑nl Δ𝑙 = 𝑘nl𝑓nl(Δ𝑙)

Nonlinear force across 
the element (scalar)

e.g. Δ𝑙 3, …



How to Derive the Equations of Motion? 

Recall that the Lagrangian is given by

ℒ = 𝒯 − 𝒱,

and Lagrange equations read

𝜕ℒ

𝜕𝐱
−
𝑑

𝑑𝑡

𝜕ℒ

𝜕 ሶ𝐱
= 𝟎,

Kinetic energy Potential energy

from which we can get the equations of motion.

For simplicity, we will derive them with a localized

nonlinearity, in the absence of linear damping and external

forcing.



Kinetic and Potential Energies of a Structure

The potential energy is an extensive quantity

𝒱 = 𝒱lin + 𝒱nl =
1

2
𝐱𝑇𝐊𝐱 + 𝒱nl

and the nonlinear potential energy is given by the work of 

the nonlinear force 

𝒱nl = න
0

Δ𝑙(𝐱)

𝜑nl 𝜉 𝑑𝜉

Assuming the nonlinearity does not store kinetic energy,

𝒯 =
1

2
ሶ𝐱𝑇𝐌 ሶ𝐱



Equations of Motion

Hence,

ℒ =
1

2
ሶ𝐱𝑇𝐌 ሶ𝐱 −

1

2
𝐱𝑇𝐊𝐱 − න

0

Δ𝑙(𝐱)

𝜑nl 𝜉 𝑑𝜉

Using Leibniz integral rule, 

𝜕ℒ

𝜕𝐱
−
𝑑

𝑑𝑡

𝜕ℒ

𝜕 ሶ𝐱
= −𝐊𝐱 −

𝜕Δ𝑙(𝐱)

𝜕𝐱
𝜑nl(Δ𝑙(𝐱)) − 𝐌 ሷ𝐱 = 𝟎

𝐌 ሷ𝐱 + 𝐊𝐱 +
𝜕Δ𝑙(𝐱)

𝜕𝐱
𝜑nl(Δ𝑙(𝐱)) = 𝟎

which eventually yields the equations of motion

𝐟nl(𝐱)
Adding other localized nonlinearities, linear damping, 

external forcing, ect. … is straightforward.



Specialization to 1-Dimensional Structures

For a localized nonlinearity between DOFs 𝑖 and 𝑗, the strain

is simply

Δ𝑙 𝐱 = 𝐥𝑇𝐱,
𝜕Δ𝑙

𝜕𝐱
= 𝐥

𝐌 ሷ𝐱 + 𝐊𝐱 + 𝐥𝜑nl(𝐥
𝑇𝐱) = 𝟎

Thus,

𝐟nl(𝐱)

with the localization vector

𝑖 𝑗

𝑙 𝐱 = 𝑙(𝟎) + 𝐥𝑇𝐱

𝐥 = [0, … , 0, −1,0, … , 0,1,0, … , 0]
𝑖 𝑗



Design Cycle of a Nonlinear Structure

What
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MEASURE MODELIDENTIFY
UNDERSTD

UNCOVER
DESIGN

Computer-aided 

modeling (FEM, …)

What types of simulation 

can be performed using a 

reduced-order model with 

localized nonlinearities?



Different Ways to Model Nonlinear Structures 

Standard Nonlinear Simulations:

Nonlinear Time Integration

28



Time Integration Is a Simulation Standard

Simulate the time response of a nonlinear system by solving its 

governing equations of motion using numerical algorithms
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𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 + 𝐟nl 𝐱, ሶ𝐱 = 𝐟ext(𝑡)

𝑥1 (m)

Time 𝑡 (s)

𝑥𝑛 (m)

Time 𝑡 (s)

. . . 



Time Integration Is a Simulation Standard
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𝐱0 = 𝐱 𝑡0 , ሶ𝐱0 = ሶ𝐱 𝑡0

Given

𝐌 ሷ𝐱𝑛+1 + 𝐂 ሶ𝐱𝑛+1 + 𝐊𝐱𝑛+1 + 𝐟nl,𝑛+1 = 𝐟ext,𝑛+1

Compute 𝐱𝑛+1 = 𝐱 𝑡𝑛+1

Such that

𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 + 𝐟nl 𝐱, ሶ𝐱
= 𝐟ext(𝑡)

EOMs:

Initial cond.:

𝐟𝑛+1



Newmark’s Iterative Scheme for Nonlinear Systems
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(See Géradin and Rixen’s book for more details)



Time Step ℎ, 𝛽 and 𝛾 Are Key Parameters
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Stability of Newmark’s Scheme for Linear Systems
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Why Newmark and Not Runge-Kutta (ode45)?

Fixed time step

Convenient for FE models with high eigenfrequencies.

Control on stability and accuracy 

Demonstrated for linear systems with 𝛽,𝛾 and time step ℎ.

Possibility to add numerical damping 

Use of the 𝛼 parameter, or HHT scheme (more accurate).

Newmark’s scheme is implemented in most commercial FE 

software.
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Influence of the Time Step / Sampling Frequency

Rule of thumb: For a periodicity error of 1%, taking higher 

harmonics into account, consider at least

35

𝑓𝑠 > 200𝑓

Frequency of interest

in the signal

Sampling frequency = 1/time step



Influence of the Time Step / Sampling Frequency

For
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Different Ways to Model Nonlinear Structures 

Advanced Nonlinear Simulations:

Nonlinear Frequency Responses and Modes

37



Limitations of Time Integration

Time simulations provide useful information about structural 

dynamics but they can be time consuming.

38

EXCITATION:

sine, swept-sine, etc.
NL SYSTEM

Time

Disp.



Limitations of Time Integration

Time simulations may reveal nonlinear phenomena but cannot 

explain their origin.
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SINE

EXCITATION
NL SYSTEM

Initial 

conditions 

A

Time

Disp.
Initial 

conditions 

B

BISTABILITY



Limitations of Time Integration

Time simulations may reveal nonlinear phenomena but cannot 

explain their origin.
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SINE

EXCITATION
NL SYSTEM

Time

Disp.

QUASIPERIODIC

REGIME



Limitations of Time Integration

Time simulations may reveal nonlinear phenomena but cannot 

explain their origin.
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SWEPT-SINE

EXCITATION
NL SYSTEM

Time / sweep frequency

Disp.

AMPLITUDE

JUMPS



Limitations of Time Integration

Time simulations may reveal nonlinear phenomena but cannot 

explain their origin.
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SWEPT-SINE

EXCITATION
NL SYSTEM

Time / sweep frequency

Disp.

NONLINEAR 

RESONANCE

5 20 30 70
-100

0

100

Low

High level

level



Nonlinear normal modes (NNMs) – See Lecture 3

NNMs are obtained by computing branches of periodic 

solutions of the underlying undamped and unforced model: 

NNMs are useful because:

They describe the deformations at resonance of the 

structure.

They describe how modal parameters evolve with 

motion amplitude.
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𝐌 ሷ𝐱 𝑡 + 𝐊𝐱 𝑡 + 𝐟nl 𝐱 = 0



Nonlinear normal modes (NNMs) – See Lecture 4

NNMs also help to uncover complex phenomena such as 

modal interactions / internal resonances.
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Energy (J)

Frequency

(Hz)

5 20 30 70
-100

0

100

2:1 modal interaction



Nonlinear Frequency Response Curves (NFRCs)

NFRCs are obtained by computing branches of periodic 

solutions of the damped model when submitted to a harmonic 

excitation: 
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𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 + 𝐟nl 𝐱, ሶ𝐱 = 𝐟ext(𝜔, 𝑡)

Time (s)

Displacement

𝑇 =
2𝜋

𝜔



Nonlinear Frequency Response Curves (NFRCs)

NFRCs are useful because they describe the evolution of 

amplitude of the steady-state responses of the structure, i.e., 

after the transients.
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Time (s)

Disp.

Time (s)

Disp.

Amplitude



Nonlinear Frequency Response Curves (NFRCs)

NFRCs are useful because they describe the evolution of 

amplitude of the steady-state responses of the structure, i.e., 

after the transients.

47
Frequency 𝜔

Amplitude



Nonlinear Frequency Response Curves (NFRCs)

The representative variable is usually chosen as the vibration 

amplitude of one of the DOFs, and is represented with respect 

to the frequency 𝜔.

48
Frequency 𝜔

Amplitude 

of 𝐱𝒊



Nonlinear Frequency Response Curves (NFRCs)

NFRCs can be seen as the nonlinear extension of linear 

frequency response curves (LFRCs), or FRFs.

49

Amplitude

Frequency 𝜔

NFRC

LFRC



Nonlinear Frequency Response Curves (NFRCs)

NFRCs can be seen as the nonlinear extension of linear 

frequency response curves (LFRCs), or FRFs.

… But

50

LFRCs NFRCs

Superposition

Uniqueness

Frequency Energy independent Energy dependent

Stability Always stable Stable or unstable



Nonlinear Frequency Response Curves (NFRCs)

The

51



Nonlinear Frequency Response Curves (NFRCs)

NFRCs also help to uncover complex phenomena such as 

amplitude jumps.

52

Frequency 𝜔

Amplitude



Nonlinear Frequency Response Curves (NFRCs)

NFRCs also help to uncover complex phenomena such as 

quasiperiodic regime.
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Frequency 𝜔

Amplitude



Nonlinear Frequency Response Curves (NFRCs)

NFRCs also help to uncover complex phenomena such as 

bistability.
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Frequency 𝜔

Amplitude



Towards the Continuation of NNMs and NFRCs

Trivia

55

1. Computation of Periodic Solutions

Time (s)

Displacement

TOPIC OF THIS LECTURE



Towards the Continuation of NNMs and NFRCs

Trivia
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2. Continuation procedure

Frequency 𝜔

Amplitude

TOPIC OF THIS LECTURE



Towards the Continuation of NNMs and NFRCs

Trivia
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3. Stability analysis

Unstable

Stable

Frequency 𝜔

Amplitude

SEE NEXT LECTURES



Towards the Continuation of NNMs and NFRCs

Trivia
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4. Bifurcation analysis

Fold
Neimark-Sacker

Frequency 𝜔

Amplitude

SEE NEXT LECTURES



Different Ways to Model Nonlinear Structures 

Computation of Periodic Solutions

59



Mathematical Representation of a Periodic Solution

There are at least 3 approaches to describe a periodic solution.

60

Displacement

(m)

Time (s)

𝑇



Mathematical Representation of a Periodic Solution

There are at least 3 approaches to describe a periodic solution.

Initial conditions 𝐱0 ሶ𝐱0
𝑇 and the period 𝑇.

61

= + Time integration

over 𝑇



Mathematical Representation of a Periodic Solution

There are at least 3 approaches to describe a periodic solution.

Piecewise polynomial functions and the period 𝑇.
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= + +



Mathematical Representation of a Periodic Solution

There are at least 3 approaches to describe a periodic solution.

Fourier series and the period 𝑇.

63

=

+

+



Computation of a Periodic Solution

Computing the periodic solution of a nonlinear system means 

searching for a solution 𝐱 that satisfies

with a periodicity condition 

This represents a boundary-value problem (BVP).
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𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 + 𝐟nl 𝐱, ሶ𝐱 = 𝐟ext(𝜔, 𝑡)

𝐱 𝑡 + 𝑇 = 𝐱(𝑡)



Computation of a Periodic Solution

There are three approaches to solve this BVP.

Based on initial conditions 𝐱0 ሶ𝐱0
𝑇.

Shooting technique 

Based on piecewise polynomial functions.

Orthogonal collocation (not discussed here)

Based on Fourier series.

Harmonic balance method 
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Shooting Technique

Optimization of the initial state of a system 𝐱0 ሶ𝐱0
𝑇 to obtain a 

periodic solution after time integration over a period 𝑇.

66

𝑇

« Angle » = 𝐱0
« Power » = ሶ𝐱0



Shooting Technique

The equations of motion are first recast in state-space form:

with

The state of this system at time 𝑡 and given initial condition 𝐲0
is denoted as 𝐲 = 𝐲(𝑡; 𝐲0).
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ሶ𝐲 𝑡 = 𝐋𝐲 𝑡 − 𝐠nl 𝐲 + 𝐠ext(𝜔, 𝑡)

𝐲 =
𝐱
ሶ𝐱

𝐋 =
𝟎 𝐈𝑛

−𝐌−1𝐊 −𝐌−1𝐂

𝐠ext =
𝟎

𝐌−1𝐟ext 𝜔, 𝑡
𝐠nl =

𝟎
𝐌−1𝐟nl 𝐱, ሶ𝐱



Shooting Technique

An initial state 𝐲0,𝑝 leads to a periodic solution if

where 𝐲 𝑇; 𝐲0,𝑝 is computed from time integration of the 

EOMs.

The shooting technique consists in computing 𝐲0,𝑝 that satisfies 
𝐡shooting = 𝟎 for 𝑇 known a priori (NFRC) or not (NNM).

In the case of a harmonic excitation with frequency 𝜔, 𝑇 =
2𝜋/𝜔.
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𝐡shooting ≡ 𝐲 𝑇; 𝐲0,𝑝 − 𝐲0,𝑝 = 𝟎



Shooting Technique Scheme (for NFRCs)
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Initial state 

at iteration 𝑖

𝐲0,𝑝
𝑖

Evaluation of

𝐡shooting
= 𝐲 𝑇; 𝐲0,𝑝

𝑖 − 𝐲0,𝑝
𝑖

Initial guess for 

initial state

𝐲0,𝑝
0

< 𝜖?

𝑇

NO: Correction (e.g., Newton-Raphson, 

fsolve, fminunc,…)

Time integration
YES

END



Periodic Solutions of Large Structures

The shooting technique is efficient and accurate for small 

nonlinear systems (1-30 DOFs).

For larger systems however, demand in CPU time (multiple 

time integrations) and memory space can be problematic.

For such cases, one usually relies on the harmonic balance 

method.
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Fourier Series Approximation

where 𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡 gathers both nonlinear and external forces.

The harmonic balance (HB) method consists in approximating 

the displacements 𝐱(𝑡) with Fourier series truncated to the 

order 𝑁𝐻.

71

𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡

= 𝐟ext 𝜔, 𝑡 − 𝐟nl 𝐱, ሶ𝐱



Fourier Series Approximation

The new unknowns are the Fourier coefficients 𝐳, with
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𝐳 = 𝐜0
𝐱𝑇 𝒔1

𝐱𝑇 𝐜1
𝐱𝑇 … 𝒔𝑁𝐻

𝐱 𝑇
𝐜𝑁𝐻

𝐱 𝑇 𝑇

𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡

𝑛𝑍 = 𝑛(2𝑁𝐻 + 1) unknowns

𝐱 𝑡 =
𝐜0
𝐱

2
+෍

𝑘=1

𝑁𝐻

𝐬𝑘
𝐱 sin 𝑘𝜔𝑡 + 𝐜𝑘

𝐱 cos(𝑘𝜔𝑡)



Fourier Series Approximation

The Fourier coefficients of 𝐟 are denoted by 𝐛, with
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𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡 =
𝐜0
𝐟

2
+෍

𝑘=1

𝑁𝐻

𝐬𝑘
𝐟 sin 𝑘𝜔𝑡 + 𝐜𝑘

𝐟 cos(𝑘𝜔𝑡)

𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡

𝐛 = 𝐜0
𝐟𝑇 𝒔1

𝐟 𝑇 𝐜1
𝐟𝑇 … 𝒔𝑁𝐻

𝐟 𝑇
𝐜𝑁𝐻

𝐟 𝑇 𝑇

= 𝐛(𝐳) since 𝐟 depends on 𝐱.



Fourier Series Approximation

Displacements and forces can be recast into a more compact 

form

where ⊗ denotes the Kronecker tensor product, 𝐈𝑛 represents 

the identity matrix and where 𝐐(𝑡) is the orthogonal 

trigonometric basis:
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𝐱 𝑡 = 𝐐 𝑡 ⊗ 𝐈𝑛 𝐳

𝐟 𝑡 = 𝐐 𝑡 ⊗ 𝐈𝑛 𝐛

𝐐 𝑡 =
1

2
sin 𝜔𝑡 cos 𝜔𝑡 … sin 𝑁𝐻𝜔𝑡 cos 𝑁𝐻𝜔𝑡



Fourier Series Approximation

With this formulation, velocities can also be defined using 

Fourier series:

where
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ሶ𝐱 𝑡 = ሶ𝐐 𝑡 ⊗ 𝐈𝑛 𝐳 = 𝐐 𝑡 𝛁 ⊗ 𝐈𝑛 𝐳

𝛁 =

0

⋱

𝛁𝑘

⋱

𝛁𝑁𝐻

𝛁𝑘 =
0 −𝑘𝜔
𝑘𝜔 0



Fourier Series Approximation

With this formulation, accelerations can also be defined using 

Fourier series:

where
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𝛁𝟐 = 𝛁𝛁 =

0

⋱

𝛁𝑘
2

⋱

𝛁𝑁𝐻

2

𝛁𝑘
2 =

− 𝑘𝜔 2 0

0 − 𝑘𝜔 2

ሷ𝐱 𝑡 = ሷ𝐐 𝑡 ⊗ 𝐈𝑛 𝐳 = 𝐐 𝑡 𝛁2 ⊗ 𝐈𝑛 𝐳



Equations of Motion in the Frequency Domain

As
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𝐌 𝐐 𝑡 𝛁2 ⊗ 𝐈𝑛 𝐳 + 𝐂 𝐐 𝑡 𝛁 ⊗ 𝐈𝑛 𝐳

+𝐊 𝐐 𝑡 ⊗ 𝐈𝑛 𝐳 = 𝐐 𝑡 ⊗ 𝐈𝑛 𝐛

𝐌 ሷ𝐱 𝑡 + 𝐂 ሶ𝐱 𝑡 + 𝐊𝐱 𝑡 = 𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡

Fourier series

approximation

This expression can be further simplified using:

- Galerkin procedure (to remove time dependency).

- Kronecker product properties.



Equations of Motion in the Frequency Domain

In a more compact form:

where 𝐀 describes the linear dynamics
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𝐀 = 𝛁2 ⊗𝐌+ 𝛁⊗ 𝐂 + 𝐈2𝑁𝐻+1 ⊗𝐊

𝐊

𝐊 − 𝜔2𝐌 −𝜔𝐂

𝜔𝐂 𝐊 − 𝜔2𝐌

⋱

𝐊 − 𝑁𝐻𝜔
2𝐌 −𝑁𝐻𝜔𝐂

𝑁𝐻𝜔𝐂 𝐊 − 𝑁𝐻𝜔
2𝐌

=

𝐡 𝐳, 𝜔 ≡ 𝐀 𝜔 𝐳 − 𝐛 𝐳 = 𝟎



Equations of Motion in the Frequency Domain

In a more compact form:

where 𝐛 is the Fourier coefficients vector of nonlinear and 

external forces
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=
𝐜0
𝐟

2
+෍

𝑘=1

𝑁𝐻

𝐬𝑘
𝐟 sin 𝑘𝜔𝑡 + 𝐜𝑘

𝐟 cos(𝑘𝜔𝑡)

𝐛 = 𝐜0
𝐟𝑇 𝒔1

𝐟 𝑇 𝐜1
𝐟𝑇 … 𝒔𝑁𝐻

𝐟 𝑇
𝐜𝑁𝐻

𝐟 𝑇 𝑇

𝐟 𝐱, ሶ𝐱, 𝜔, 𝑡 = 𝐟ext 𝜔, 𝑡 − 𝐟nl 𝐱, ሶ𝐱

𝐡 𝐳, 𝜔 ≡ 𝐀 𝜔 𝐳 − 𝐛 𝐳 = 𝟎



Equations of Motion in the Frequency Domain

𝐛 can be computed, e.g., with an alternating frequency-time 

scheme, since the evaluation of the nonlinear forces in the time 

domain is straightforward.
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𝐛(𝐳)

𝐱 𝑡 , ሶ𝐱(𝑡)

𝐳

𝐟ext 𝜔, 𝑡 − 𝐟nl 𝐱, ሶ𝐱

ℱ−1 ℱ



Equations of Motion in the Frequency Domain

In a more compact form:

If for a given forcing frequency 𝜔, one finds a vector 𝐳∗ such 

that 

Then the time series 𝐱∗(𝑡) reconstructed from 𝐳∗

verify the EOMs of the system.

are periodic.
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𝐡 𝐳, 𝜔 ≡ 𝐀 𝜔 𝐳 − 𝐛 𝐳 = 𝟎

𝐡 𝐳∗, 𝜔 = 𝟎



Equations of Motion in the Frequency Domain

𝐡 𝐳,𝜔 = 0 is a nonlinear algebraic equation (easier to 

solve than time integrations as in shooting technique).

𝐳 are the Fourier coefficients of the displacements and the 

new unknowns of the problem (usually less than for 

orthogonal collocation).

For NFRCs, 𝜔 is the forcing frequency and is a system 

parameter.
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𝐡 𝐳, 𝜔 ≡ 𝐀 𝜔 𝐳 − 𝐛 𝐳 = 𝟎



Harmonic Balance Parameters
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Number of harmonics 𝑁𝐻
retained in the Fourier series.



Harmonic Balance Parameters

84

Number of time samples 𝑁 in the 

Fourier transform.



Harmonic Balance Parameters

85

Stability parameters (see next

lectures)



Harmonic Balance Parameters
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Amplitude of the sine series used

as initial guess for all DOFs.



Harmonic Balance Parameters
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The Newton-Raphson procedure

fails if this number of iterations is

exceeded.



Harmonic Balance Parameters
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The Newton-Raphson procedure

stops if the relative error is

smaller than this precision.



Harmonic Balance Parameters

89

Because the frequency (e.g., 

30Hz = 188rad/s) and the 

amplitude (e.g., 0.001m) have 

different orders of magnitude, 

time and displacements have to 

be rescaled to avoid ill

conditioning. 



Harmonic Balance Method: In Summary

Adaptations of the method improve its performance (chain rule, 

…) – not discussed here. 
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Efficient

Harmonic coefficients 

available

Less accurate

Many harmonics are 

sometimes required

PROS CONS

Filtering



Computation of Periodic Solutions: In Summary

Periodic solutions of nonlinear structures can be computed with

time-domain (shooting, orthogonal collocation) or frequency-

domain method (harmonic balance).

The differences between these methods lie in their accuracy

and execution time.

Without adaptation, however, the harmonic balance: 

- Fails at computing periodic reponses in severe nonlinear

regimes (need for continuation procedure). 

- Does not indicate if the solutions can be observed

experimentally or not (need for a stability analysis).

91



Different Ways to Model Nonlinear Structures 

Computation of Branches 

of Periodic Solutions

92



Computation of Branches of Periodic Solutions

93

Numerical methods to go from 

single periodic solutions…

y

Frequency

… to a

branch of periodic solutions

y

Frequency



Mathematical Definition of a Branch of Periodic Solutions

Let us consider a function 𝐅:ℝ𝑛+1 → ℝ𝑛. A branch is a set of 

solutions 𝐅 𝐱, 𝜆 = 𝟎, where 𝐱 are the state variables and 𝜆 is a 

system parameter.

The branch can be represented in a 2D plane through the 

evolution of a representative variable 𝑦 = 𝑦(𝐱) w.r.t. 𝜆.

(For a more formal definition, see the implicit function theorem.)
94

y

Parameter 𝜆

F = 0



Types of Branch 

In this course, the branch is composed by solutions of the 

harmonic balance equation for a nonlinear system: 

Nonlinear Frequency Response Curves

Forced and damped system

Nonlinear Normal Modes

Unforced and undamped system
95

𝐡 𝐳,𝜔 :ℝ𝑛𝑧+1 → ℝ𝑛𝑧

Fourier coefficients (= state variables)

Frequency (= system parameter)



Sequential Continuation – A Straightforward Approach

Increase the period and use the previously computed periodic 

solution as an initial guess for the next computation.
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Amplitude

𝜔

Previous solution as prediction

𝛥𝜔

Optimization with fixed frequency

Solutions of the branch



Sequential Continuation – Scheme

If HB method is already implemented, sequential continuation is 

programmed in a few lines.
97

Initial solution

𝐳𝑖 = 𝐳0

Next frequency

𝜔𝑖 = 𝜔𝑖−1 + 𝛥𝜔

New iteration

𝐳𝑖

Convergence

𝐡(𝐳𝑖 , 𝜔𝑖) = 𝟎?

Yes

𝐳𝑖 = 𝐳𝑖−1

No

Correction

(Newton-Raphson, 

fsolve, fminunc, etc.)



Sequential Continuation Fails at Turning Points

0.02

1

0.1 𝑠𝑖𝑛(𝜔𝑡)

1

1

Amplitude

Frequency 𝜔

Reference

𝛥𝜔 < 0 𝛥𝜔 > 0
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A New Continuation Scheme

In order to pass through turning points, both the state 𝐳 and the 

parameter 𝜔 should vary. This is done through a 2-step 

procedure:

99

Amplitude

Frequency 𝜔

Prediction1



A New Continuation Scheme

In order to pass through turning points, both the state 𝐳 and the 

parameter 𝜔 should vary. This is done through a 2-step 

procedure:
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Amplitude

Frequency 𝜔

Prediction1

Corrections2



Predictor Step

Different predictors can be considered:

where 𝐗 = 𝐳 𝜔 𝑇 denotes the unknown vector.

Secant predictor
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𝐗pred
𝑖 = 𝐗𝑖−1 + 𝑠𝑖𝐭𝑖

Amp.

Frequency 𝜔

𝑠𝑖

Stepsize

𝐭𝑖

Unit vector

𝐭𝑖 =
𝐗𝑖−1 − 𝐗𝑖−2

𝐗𝑖−1 − 𝐗𝑖−2



Predictor Step

Different predictors can be considered:

Tangent predictor
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Amp.

Frequency 𝜔

𝑠𝑖
𝐡𝐳 𝐡𝜔

𝐭𝑖−1
𝑇 𝐭𝑖 =

𝟎
1

𝐭𝑖

More accurate but requires the 

computation of the Jacobian matrices

Imposed orientation 

𝐗𝑝𝑟𝑒𝑑
𝑖 = 𝐗𝑖−1 + 𝑠𝑖𝐭𝑖

Stepsize

Unit vector



Corrector Step

We are looking for a solution of 𝐡 𝐳,𝜔 = 𝟎, with

Two possibilities:

Fix the parameter 𝜔 and only optimize 𝐳.

Cf. sequential continuation

Add another equation to the system.

Pseudo-arclength and Moore-Penrose schemes

103

𝐡 𝐳,𝜔 :ℝ𝑛𝑧+1 → ℝ𝑛𝑧



Pseudo-arclength Corrector Step

With the pseudo-arclength scheme, a solution is sought in the 

perpendicular direction w.r.t. the prediction.

104

Amp.

Frequency 𝜔



Pseudo-arclength Corrector Step

With the pseudo-arclength scheme, a solution is sought in the 

perpendicular direction w.r.t. the prediction.

with 
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𝐳 𝑗+1
𝑖 = 𝐳 𝑗

𝑖 + 𝚫𝐳 𝑗

𝜔 𝑗+1
𝑖 = 𝜔 𝑗

𝑖 + Δ𝜔 𝑗

𝐡𝐳 𝐳 𝑗
𝑖 , 𝜔 𝑗 𝐡𝜔 𝐳 𝑗

𝑖 , 𝜔 𝑗

𝐭𝐳
𝑖 𝑇 t𝜔

𝑖

𝚫𝐳 𝐣

𝛥𝜔 𝑗
=

−𝐡 𝐳 𝑗
𝑖 , 𝜔 𝑗

0

𝑖 = continuation iteration

(𝑗) = corrector iteration

Orthogonality condition

Taylor series expansion



Other Correctors

Other corrector definitions can also be used.

With the Moore-Penrose scheme for instance, the correction 

direction is updated at each corrector step.
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Amp.

Frequency 𝜔



Influence of the Stepsize

Stepsize is a key parameter for the continuation procedure.
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𝐗pred
𝑖 = 𝐗𝑖−1 + 𝑠𝑖𝐭𝑖

Amp.

Frequency 𝜔

𝑠𝑖

Stepsize

𝐭𝑖

Unit vector



Small Stepsize

Small number of corrections

Good resolution for the branch

Slow continuation procedure
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Amplitude

Frequency 𝜔



Large Stepsize

Fast continuation procedure

Large number of corrections

Poor resolution for the branch
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Amplitude

Frequency 𝜔



Stepsize Strategy

Fixed stepsize

Adaptative stepsize

where 𝑀 is the iteration number for the current correction,

and 𝑀∗ is the optimal iteration number.
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𝑠𝑖 = constant

𝑠𝑖 =
𝑀∗

𝑀
𝑠𝑖−1



Influence of Harmonic Balance Parameters

With the harmonic balance method, the displacements are 

approximated with Fourier series.

Fourier coefficients 𝐳 are computed with the discrete Fourier 

transform:
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𝐱 𝑡 = 𝐜0
𝐱 +෍

𝑘=1

𝑁𝐻

𝐬𝑘
𝐱 sin 𝑘𝜔𝑡 + 𝐜𝑘

𝐱 cos(𝑘𝜔𝑡)

𝐳

𝐳 = 𝚪+(𝑁)෤𝐱

Number of harmonics

Number of time samples (power of 2) 



Influence of the Number of Harmonics 𝑁𝐻

𝑁𝐻 has a direct influence on the accuracy of the harmonic 

balance solution, and hence on the accuracy of the branch.
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Amplitude

Frequency 𝜔

𝑁𝐻

Always make sure to check

for convergence!



Influence of the Number of Time Samples 𝑁

𝑁 has a direct influence on the discrete Fourier transform, and 

the accuracy of the alternating frequency/time-domain method.
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Amplitude

Frequency 𝜔



Influence of the Number of Time Samples 𝑁

𝑁 has a direct influence on the discrete Fourier transform, and 

the accuracy of the alternating frequency/time-domain method.
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Increasing 𝑁

Amplitude

Frequency 𝜔



Influence of the Number of Time Samples 𝑁

𝑁 has a direct influence on the discrete Fourier transform, and 

the accuracy of the alternating frequency/time-domain method.
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Increasing 𝑁

Amplitude

Frequency 𝜔



Influence of the Number of Time Samples 𝑁

𝑁 has a direct influence on the discrete Fourier transform, and 

the accuracy of the alternating frequency/time-domain method.
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Increasing 𝑁

Amplitude

Frequency 𝜔

Always make sure to check

for convergence!



Continuation: In Summary

Sequential continuation can be easily implemented to represent 

the evolution of the periodic solutions w.r.t. to the frequency 𝜔
but it fails at turning points.

Continuation schemes based on predictor/corrector steps give 

the evolution of the periodic solutions in both stable and 

unstable regions.

HB and continuation parameters have to be carefully selected 

to ensure accuracy and good resolution of the branches.
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Further Readings

M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J. C. Golinval, Nonlinear normal 

modes, Part II: Toward a practical computation using numerical continuation 

techniques, Mechanical systems and signal processing, 23(1), 195-216, 2009.

S. Karkar, B. Cochelin, C. Vergez, A comparative study of the harmonic balance 

method and the orthogonal collocation method on stiff nonlinear systems, Journal 

of Sound and Vibration, 333(12), 2554-2567, 2014.

T. Detroux, L. Renson, L. Masset, G. Kerschen, The harmonic balance method for 

bifurcation analysis of large-scale nonlinear mechanical systems, Computer 

Methods in Applied Mechanics and Engineering, 296, 18-38, 2015.

T. Detroux, Performance and Robustness of Nonlinear Systems Using Bifurcation 
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