STRUCTURAL ENGINEERING **OF SATELLITES**

From models to tests, through analysis

C O M P A N Y P R O P R I E T A R Y – A E R O S P A C E L A B . C O M

AGENDA

- Aerospacelab
- Objectives & stakes
- Environments & loads
- Failure modes
- Structural analysis
- Vibration testing

AEROSPACELAB

SATELLITES FROM A TO Z

COMPANY PROPRIETARY - AEROSPACELAB.COM

Founded in March 2018, ~350 FTE (Q2 2024)

COMPANY PROPRIETARY - AEROSPACELAB.COM

5 years of development for a complete Satellite Product offering

I N-H O U S E S U B SYS T E M S

Aerospacelab today

49 M € RAISED – SEED, SERIES A & SERIES B

ARTHUR

Our first satellite launched in June 2021

GREGOIRE

Our first VSP platform was launched on June 12th 2023

PVCC

Successful launch for ESA on Oct 9th 2023

FLIGHT HERITAGE

Launched 3 satellites in 2023 & 4 scheduled in 2024: 1 VHR and 3 SIGINTs

A HIGH-LEVEL TEAM

GLOBAL EXPANSION

Offices in Belgium, Switzerland, France and USA

ONE OPERATIONAL FINAL ASSEMBLY LINE

6

 $350+$ FTE by Q2 2024 \Box Offices in Belgium, Since July 2022, we produce and assemble satellites internally

 $LAB.CON$

Unlocking a new world of use cases

ENVIRONMENT MONITORING

THREAT DETECTION

GLOBAL WARMING IMPACT ANALYSIS

AIRPORT ACTIVITIES ANALYSIS

YIELDS MAXIMIZATION **AND FORECASTS**

PORTS' THROUGHPUT **ESTIMATIONS**

INSURANCE AND REAL ESTATE SUPPORT

SUPPORT TO OPERATIONS

CRITICAL INFRASTRUCTURE **MONITORING**

MANUFACTURING SITE ANALYSIS

COMMODITIES **INVENTORY LEVELS**

OBJECTIVE & STAKES

IT SEEMS OBVIOUS, BUT IT'S NOT

COMPANY PROPRIETARY - AEROSPACELAB.COM

THE STRUCTURE HOLDS THE SATELLITE'S COMPONENTS

IN EACH STEP OF ITS LIFE, THE SATELLITE EXPERIENCES LOADS

Cleanroom Gravity, shocks, tests

Transport Gravity, shocks, vibrations, temperature

Mating & Idling Gravity, shocks, temperature

Reentry Acceleration, vibrations, temperature

Flight Microvibrations, temperature, radiation

Separation & Deployment Shocks

Launch Acceleration, vibrations, sound

Failure: "rupture, collapse, degradation, excessive wear or any other phenomenon resulting in an inability to sustain design limit loads, pressures (e.g. MDP) and environments."

Consequences of mechanical failure: Loss of quality

ACCOMMODATION FOR AOCS CONTROLLABILITY

STAR TRACKER ACCOMMODATION

Crosses horizon Acceptable

Overlapping Blinded by sun

MINIMIZE THE MECHANICAL PATH BETWEEN SENSORS

ANTENNAS ACCOMMODATION: ALL ABOUT POINTING

SOME UNITS ARE SENSITIVE TO EM NOISE

VENTING HOLES OUTGAS AWAY FROM SENSITIVE EQUIPMENT

ENSURE FABRICABILITY AT LOWEST COST POSSIBLE

Machining **Machining Additive manufacturing**

ENVIRONMENTS & LOADS

THE VARIOUS WAYS THE LAUNCHER MAKES OUR LIVES MISERABLE

C O M P A N Y P R O P R I E T A R Y – A E R O S P A C E L A B . C O M

LAUNCH LOADS COVER A WIDE FREQUENCY BAND

Static acceleration $($ \sim 0 Hz) 1. Launcher thrust

Low-frequency dynamics (0 to 100 Hz) 2. Launcher flexible modes

High-frequency dynamics (20 to 2,000 Hz) 3. Vibrations from propulsion 4. Vibro-acoustics

High-frequency acoustics (20 to 8,000 Hz) 5. Reflected from propulsion 6. Aerodynamics

Shocks (100 to 10,000 Hz) 7. Separation events

QUASI-STATIC LOADS COVER ALL FREQUENCIES

WORST INTERFACE LOADS SHOULD BE COVERED

FOUR FREQUENCY RESPONSE FUNCTIONS

$$
\begin{bmatrix} \ddot{x}(\omega) \\ R(\omega) \end{bmatrix} = \begin{bmatrix} -\omega^2 G(\omega) & T(\omega) \\ -T(\omega) & M(\omega) \end{bmatrix} \begin{bmatrix} F(\omega) \\ \ddot{y}(\omega) \end{bmatrix}
$$

INFLUENCE OF PHYSICAL PARAMETERS

INFLUENCE OF DYNAMIC PARAMETERS

 \boldsymbol{k}

 m

$$
\begin{bmatrix} \ddot{x}(\omega) \\ R(\omega) \end{bmatrix} = \begin{bmatrix} -\frac{\omega^2}{k} H(\omega) & T(\omega) \\ -T(\omega) & mT(\omega) \end{bmatrix} \begin{bmatrix} F(\omega) \\ \ddot{y}(\omega) \end{bmatrix}
$$

Frequency

Natural frequency $\omega_0 =$

 T

Amplitude

DETERMINISTIC BEHAVIOR MAKES UP SINE LOADS

STOCHASTIC BEHAVIOR MAKES UP RANDOM LOADS

RANDOM SIGNALS ARE ANALYZED WITH STATISTICS

PSD SHOWS POWER CONTENT IN FREQUENCY DOMAIN

OBTAINING THE RMS DIRECTLY FROM THE PSD

POWER SCALES AS THE SQUARE OF THE AMPLITUDE

38

CUMULATIVE RMS SHOWS WHERE THE LEVEL COMES FROM

MOVING RMS SHOWS THE LEVEL IN FREQUENCY BANDS 1 octave½ octave ½ octave ¼ octave Moving RMS [g] PSD $[g^2/Hz]$ 0 Frequency

Frequency

RESPONSE OF A HARMONIC OSCILLATOR TO A PSD

THE VIBRATION RESPONSE SPECTRUM GENERALIZES **FOR EVERY OSCILLATORS**

MILES' EQUATION APPROXIMATES THE VRS FOR A FLAT PSD

RESPONSE OF A HARMONIC OSCILLATOR TO SHOCK

SRS OF HALF-SINE IMPULSE REACHES A PLATEAU

ACOUSTIC LOADS MOSTLY AFFECT LARGE AND THIN WALLS

OverAll Sound Pressure Level 10 log

 $p_{\rm rms}^2$ p_{ref}^2

FAIRING ACOUSTIC ENVIRONMENT CAN BE ASSUMED DIFFUSE

Direct field

Diffuse field

FAILURE MODES

WHAT CAN BREAK AND HOW

COMPANY PROPRIETARY - AEROSPACELAB.COM

THE MARGINS TAKEN IN THE VERIFICATION LOGIC

From: ECSS-E-ST-32-10C

CONFIDENCE LEVELS CHARACTERIZE UNCERTAINTY

YIELD AND ULTIMATE FAILURE OF METALLIC PARTS

Von Mises yield criterion

LIMIT TESTING TO A STRICT MINIMUM DUE TO FATIGUE

- Fatigue failure
	- o Cyclic load
	- o Stress below material strength
- Due to crack propagation
- High preload is beneficial
- Palmgren-Miner rule

$$
4\sum_{i=1}^{m} \frac{n_i}{N_{\text{f},i}} \le 1
$$

m stress conditions
n_i cycles
N_{f,i} cycles to failure

Cycles to failure N

PCB COMPONENTS ARE SENSITIVE TO FATIGUE

Miner's cumulative index

$$
CDI = 4 \sum_{i=1}^{m} \frac{n_i}{N_{f,i}} \le 1
$$

Actual life (# cycles) $n = f \times T$ PCB mode freq. *f*, test duration *T*

54

BOLTED JOINTS CLAMP FLANGES AGAINST ANOTHER PART

FRICTION GRIP JOINTS USE STATIC FRICTION IN SHEAR

BEARING JOINTS ARE FOR LOW TOLERANCE APPLICATIONS

Avoid hyperstaticity

BOLT FAILURES MODES (FASTENER)

Slipping → bearing failure Fastener shear failure Fastener tensile failure

Gapping Thread shear pull-out Crushing of flange

BOLT FAILURE MODES (FLANGE)

Flange tension failure Flange shear-out Flange tear-out

DIMENSIONAL STABILITY

Alignment on ground

Temperature gradient

1g

Gravity release

Moisture Different materials **Exercise** Gravity release absorption/release

Slipping

STRUCTURAL ANALYSIS

FILLING UP THE COMPANY'S SERVERS 101

COMPANY PROPRIETARY - AEROSPACELAB.COM

LOAD CYCLE ANALYSIS FOR STRUCTURAL DESIGN

STRUCTURAL ANALYSIS WORKFLOW

Isogrid Orthogrid

Stiffener profile

A FINITE ELEMENT MODEL CAN BE MORE OR LESS ACCURATE

ELEMENT QUALITY IS ESSENTIAL FOR VALID RESULTS

BOLTS ARE MODELLED WITH EQUIVALENT PROPERTIES

Mass point

- Fastener
- Washer
- Spring element
	- Flange
	- Fastener
- Rigid element
	- Fastener head
	- Washer
	- Fastener thread

SUPERELEMENTS ALLOW LIGHT BUT ACCURATE MODELS

Substructuring

Static reduction (Guyan)

 K_{BB} K_{BO} q_B $\begin{bmatrix} q_D \\ q_O \end{bmatrix} =$ f_B f_O $K_{BB}-K_{BO}K_{OO}^{-1}K_{OB}$) $q_B=f_B-K_{BO}K_{OO}^{-1}f_O$ q_B $\begin{bmatrix} T_B \\ q_O \end{bmatrix} = T_G q_B =$ \overline{l} $- K_{OO}^{-1} K_{OB}$ q_B

Dynamic reduction (Craig-Bampton)
\n
$$
(-\omega^2 M + i\omega C + [K + iK_4]) \begin{bmatrix} q_B \\ q_O \end{bmatrix} = \begin{bmatrix} f_B \\ f_O \end{bmatrix}
$$
\n
$$
\begin{bmatrix} q_B \\ q_O \end{bmatrix} = T_{CB} \begin{bmatrix} q_B \\ Q \end{bmatrix} = \begin{bmatrix} I & 0 \\ -K_{OO}^{-1}K_{OB} & \Phi_{OO} \end{bmatrix} \begin{bmatrix} q_B \\ Q \end{bmatrix}
$$
\n
$$
T_{CB}^T(-\omega^2 M + i\omega C + [K + iK_4])T_{CB} \begin{bmatrix} q_B \\ q_O \end{bmatrix} = T_{CB}^T \begin{bmatrix} f_B \\ f_O \end{bmatrix}
$$

STRAIN ENERGY DENSITY SHOWS WEAK POINTS

Strain energy density

 $U_{\rm d} = \int \sigma \epsilon \, d\epsilon$

Strain energy

 $U = \iiint U_{\rm d} dV$

Strain ε

Strain energy density in free-free modes

TOPOLOGY OPTIMIZATION REMOVE USELESS ELEMENTS

STRUCTURAL AND THERMAL DO NOT USE THE SAME FEM

ACOUSTIC MODELING

VIBRATION TESTING

THE MOMENT YOU KNOW WHETHER YOU SCREWED UP

COMPANY PROPRIETARY - AEROSPACELAB.COM

THE TWO APPROACHES TO QUALIFICATION LOGIC

Qualification

- Objective = prove that the article will survive limit loads
- Check of design
- Better to overtest than understest

Acceptance

- Objective = prove that the article is equivalent to the QM
- Check of workmanship
- Better to undertest than overtest

Each test on the FM is an additional risk (Fatigue, stochastic luck)

ELECTRODYNAMICAL SHAKER USED FOR VIBRATION TESTS

Multi-axis shaker

MGSE: MECHANICAL GROUND SUPPORT EQUIPMENT

Head expander and the state of the state of the Slip table

OUTPUT OF VIBRATION TESTING IS MEASURED BY SENSORS

RESONANCES ARE STRUCTURE-DEPENDENT, ANTIRESONANCES ARE TEST-DEPENDENT

UNOBSERVABLE OR UNCONTROLLABLE MODES ARE INVISIBLE

Resonance modes

CONTROL SENSORS SHOULD BE PLACED WITH CARE

Consider the impact of your sensor (mass, stiffness…)

82

AUTOMAC MATRIX FOR MEASUREMENT SENSOR PLACEMENT

Low-level sine

- Standard in the industry
- Modes only excited for a short time
- Low damping \rightarrow high g's
- Some values: 0.2 g, 0.5 g, 1 g…

Low-level random

- Standard at ASL
- Modes continuously excited
- Low g's
- Some values: 1gRMS…

Not everyone agrees on what is low-level

LOW-LEVEL AND HIGH-LEVEL BEHAVIOR MAY VARY

Frequency

Success criteria:

- No untightening of screws
- Functional test
- Upper limit to frequency shift (e.g. 5%)
- Upper limit to amplitude shift (e.g. 20%)
- Compliance with frequency requirements

LOW-LEVEL TESTS ALLOW MODEL CORRELATION & UPDATING

QUASI-STATIC TESTS CHECK THE STRUCTURAL LOAD PATHS

Dedicated test

• Static load

• Burst sine

Combined test

- Sine sweep
- Random

Lower than first natural frequency

$$
\left(\frac{2}{3}, \frac{1}{\sqrt{2}}, \dots\right)
$$

Measurement at the CoG:

Time

Spectra contain phase information

From: ECSS-E-HB-32-26A

C O M P A N Y P R O P R I E T A R Y – A E R O S P A C E L A B . C O M

A RANDOM ENVELOPE MUST COVER EVERY CROSS-AXIS

ENVELOPING IS NOT COMMUTATIVE

TEST ENVELOPE COVERS QSL AND FLEXIBLE RANGES

COUPLED ANTIRESONANCES CORRESPOND TO UNCOUPLED RESONANCES

ANTIRESONANCES ARE IGNORED IN TEST ENVELOPES

REMOVING ANTIRESONANCES LEADS TO OVERTESTING

NOTCHING REINTRODUCES ANTIRESONANCES

SHOCK TESTS ARE OFTEN MADE WITH RINGING PLATE

Far-field: shaker

ACOUSTIC TESTING

Reverberant field acoustic noise testing **Direct field acoustic noise testing**

THANK YOU

FEEL FREE TO ASK YOUR QUESTIONS

COMPANY PROPRIETARY - AEROSPACELAB.COM

BONUS SLIDES

COMPANY PROPRIETARY - AEROSPACELAB.COM

ISOLATION AIMS TO REDUCE VIBRATION LOADS

