STRUCTURAL ENGINEERING OF SATELLITES

From models to tests, through analysis

COMPANY PROPRIETARY - AEROSPACELAB.COM

AGENDA

- Aerospacelab
- Objectives & stakes
- Environments & loads
- Failure modes
- Structural analysis
- Vibration testing

AEROSPACELAB

SATELLITES FROM A TO Z

COMPANY PROPRIETARY - AEROSPACELAB.COM

Founded in March 2018, ~350 FTE (Q2 2024)

COMPANY PROPRIETARY - AEROSPACELAB.COM

5 years of development for a complete Satellite Product offering

IN-HOUSE SUBSYSTEMS

Aerospacelab today

49 M € RAISED – SEED, SERIES A & SERIES B

ARTHUR

Our first satellite launched in June 2021

GREGOIRE

Our first VSP platform was launched on June 12th 2023

PVCC Successful launch for

ESA on Oct 9th 2023

FLIGHT HERITAGE

Launched 3 satellites in 2023 & 4 scheduled in 2024: 1 VHR and 3 SIGINTs

A HIGH-LEVEL TEAM

350+ FTE by Q2 2024

GLOBAL EXPANSION

Offices in Belgium, Switzerland, France and USA

ONE OPERATIONAL FINAL ASSEMBLY LINE

Since July 2022, we produce and assemble satellites internally

OMPANY PROPRIETARY - AEROSPACELAB.COM

Unlocking a new world of use cases

ENVIRONMENT MONITORING

THREAT DETECTION

GLOBAL WARMING IMPACT ANALYSIS

NATURAL DISASTER MANAGEMENT

AIRPORT ACTIVITIES ANALYSIS

YIELDS MAXIMIZATION AND FORECASTS

PORTS' THROUGHPUT ESTIMATIONS

INSURANCE AND REAL ESTATE SUPPORT

SUPPORT TO OPERATIONS

CRITICAL INFRASTRUCTURE MONITORING

MANUFACTURING SITE ANALYSIS

COMMODITIES INVENTORY LEVELS

OBJECTIVE & STAKES

IT SEEMS OBVIOUS, BUT IT'S NOT

COMPANY PROPRIETARY - AEROSPACELAB.COM

THE STRUCTURE HOLDS THE SATELLITE'S COMPONENTS

IN EACH STEP OF ITS LIFE, THE SATELLITE EXPERIENCES LOADS

Cleanroom Gravity, shocks, tests

Transport Gravity, shocks, vibrations, temperature

Mating & Idling Gravity, shocks, temperature

vibrations, sound

Reentry Acceleration, vibrations, temperature

Flight Microvibrations, temperature, radiation

Separation & Deployment Shocks

MECHANICAL FAILURE MUST BE AVOIDED (DUH)

Failure: "rupture, collapse, degradation, excessive wear or any other phenomenon resulting in an inability to sustain design limit loads, pressures (e.g. MDP) and environments."

Consequences of mechanical failure:

Loss of quality

ACCOMMODATION FOR AOCS CONTROLLABILITY

STAR TRACKER ACCOMMODATION

Overlapping

Crosses horizon

Blinded by sun

Acceptable

MINIMIZE THE MECHANICAL PATH BETWEEN SENSORS

ANTENNAS ACCOMMODATION: ALL ABOUT POINTING

MFN

SOME UNITS ARE SENSITIVE TO EM NOISE

VENTING HOLES OUTGAS AWAY FROM SENSITIVE EQUIPMENT

ENSURE FABRICABILITY AT LOWEST COST POSSIBLE

Machining

Additive manufacturing

ENVIRONMENTS & LOADS

THE VARIOUS WAYS THE LAUNCHER MAKES OUR LIVES MISERABLE

COMPANY PROPRIETARY - AEROSPACELAB.COM

LAUNCH LOADS COVER A WIDE FREQUENCY BAND

Static acceleration (~ 0 Hz) 1. Launcher thrust

Low-frequency dynamics (0 to 100 Hz) 2. Launcher flexible modes

High-frequency dynamics (20 to 2,000 Hz)3. Vibrations from propulsion4. Vibro-acoustics

High-frequency acoustics (20 to 8,000 Hz)5. Reflected from propulsion6. Aerodynamics

Shocks (100 to 10,000 Hz) 7. Separation events

QUASI-STATIC LOADS COVER ALL FREQUENCIES

Falcon 9

From: SpaceX RPUG

WORST INTERFACE LOADS SHOULD BE COVERED

FOUR FREQUENCY RESPONSE FUNCTIONS

	Excitation	Response
Displacement	У	X
Force	F	R

$$\begin{bmatrix} \ddot{x}(\omega) \\ R(\omega) \end{bmatrix} = \begin{bmatrix} -\omega^2 G(\omega) & T(\omega) \\ -T(\omega) & M(\omega) \end{bmatrix} \begin{bmatrix} F(\omega) \\ \ddot{y}(\omega) \end{bmatrix}$$

G	Dyn. flexibility	[g ₀ /N]
Т	Transmissibility	[-]
М	Dyn. mass	$[N/g_0]$

INFLUENCE OF PHYSICAL PARAMETERS

INFLUENCE OF DYNAMIC PARAMETERS

k

m

$$\begin{bmatrix} \ddot{x}(\omega) \\ R(\omega) \end{bmatrix} = \begin{bmatrix} -\frac{\omega^2}{k}H(\omega) & T(\omega) \\ -T(\omega) & mT(\omega) \end{bmatrix} \begin{bmatrix} F(\omega) \\ \ddot{y}(\omega) \end{bmatrix}$$

Frequency

Natural frequency $\omega_0 =$

Т

Amplitude

DETERMINISTIC BEHAVIOR MAKES UP SINE LOADS

STOCHASTIC BEHAVIOR MAKES UP RANDOM LOADS

RANDOM SIGNALS ARE ANALYZED WITH STATISTICS

PSD SHOWS POWER CONTENT IN FREQUENCY DOMAIN

OBTAINING THE RMS DIRECTLY FROM THE PSD

POWER SCALES AS THE SQUARE OF THE AMPLITUDE

CUMULATIVE RMS SHOWS WHERE THE LEVEL COMES FROM

MOVING RMS SHOWS THE LEVEL IN FREQUENCY BANDS 1 octave ¹/₂ octave ¹/₂ octave ¹/₄ octave PSD Moving RMS [g] $[g^2/Hz]$

Frequency

Frequency

0

RESPONSE OF A HARMONIC OSCILLATOR TO A PSD

THE VIBRATION RESPONSE SPECTRUM GENERALIZES FOR EVERY OSCILLATORS

MILES' EQUATION APPROXIMATES THE VRS FOR A FLAT PSD

RESPONSE OF A HARMONIC OSCILLATOR TO SHOCK

SRS OF HALF-SINE IMPULSE REACHES A PLATEAU

ACOUSTIC LOADS MOSTLY AFFECT LARGE AND THIN WALLS

Falcon 9

OverAll Sound Pressure Level 10 log

 $\left(\frac{p_{\rm rms}^2}{p_{\rm ref}^2}\right)$

FAIRING ACOUSTIC ENVIRONMENT CAN BE ASSUMED DIFFUSE

Direct field

Uniform field

Diffuse field

FAILURE MODES

WHAT CAN BREAK AND HOW

COMPANY PROPRIETARY - AEROSPACELAB.COM

THE MARGINS TAKEN IN THE VERIFICATION LOGIC

From: ECSS-E-ST-32-10C

CONFIDENCE LEVELS CHARACTERIZE UNCERTAINTY

YIELD AND ULTIMATE FAILURE OF METALLIC PARTS

Von Mises yield criterion

LIMIT TESTING TO A STRICT MINIMUM DUE TO FATIGUE

- Fatigue failure
 - o Cyclic load
 - o Stress below material strength
- Due to crack propagation
- High preload is beneficial
- Palmgren-Miner rule

$$4\sum_{i=1}^{m} \frac{n_i}{N_{f,i}} \le 1$$

m stress conditions
 n_i cycles
 $V_{f,i}$ cycles to failure

Cycles to failure N

PCB COMPONENTS ARE SENSITIVE TO FATIGUE

Probability

54

BOLTED JOINTS CLAMP FLANGES AGAINST ANOTHER PART

BEARING JOINTS ARE FOR LOW TOLERANCE APPLICATIONS

Avoid hyperstaticity

BOLT FAILURES MODES (FASTENER)

Slipping → bearing failure

Fastener shear failure

Thread shear pull-out

Fastener tensile failure

Crushing of flange

Gapping

BOLT FAILURE MODES (FLANGE)

Flange tension failure

Flange shear-out

Flange tear-out

DIMENSIONAL STABILITY

Different materials

Alignment on ground

Thermo-elastic distortion

Temperature gradient

Gravity release

Moisture absorption/release

Slipping

STRUCTURAL ANALYSIS

FILLING UP THE COMPANY'S SERVERS 101

COMPANY PROPRIETARY - AEROSPACELAB.COM

LOAD CYCLE ANALYSIS FOR STRUCTURAL DESIGN

STRUCTURAL ANALYSIS WORKFLOW

GRID PANELS APPROACH HOMOGENEOUS BEHAVIOR

Isogrid

Orthogrid

Stiffener profile

A FINITE ELEMENT MODEL CAN BE MORE OR LESS ACCURATE

ELEMENT QUALITY IS ESSENTIAL FOR VALID RESULTS

BOLTS ARE MODELLED WITH EQUIVALENT PROPERTIES

Mass point

- Fastener
- Washer
- Spring element
 - Flange
 - Fastener
- Rigid element
 - Fastener head
 - Washer
 - Fastener thread

SUPERELEMENTS ALLOW LIGHT BUT ACCURATE MODELS

Substructuring

Static reduction (Guyan)

 $\begin{bmatrix} K_{BB} & K_{BO} \\ K_{OB} & K_{OO} \end{bmatrix} \begin{bmatrix} q_B \\ q_O \end{bmatrix} = \begin{bmatrix} f_B \\ f_O \end{bmatrix}$ $\begin{bmatrix} q_B \\ q_O \end{bmatrix} = T_G q_B = \begin{bmatrix} I \\ -K_{OO}^{-1} K_{OB} \end{bmatrix} q_B$ $(K_{BB} - K_{BO} K_{OO}^{-1} K_{OB}) q_B = f_B - K_{BO} K_{OO}^{-1} f_O$

Dynamic reduction (Craig-Bampton)

$$(-\omega^{2}M + i\omega C + [K + iK_{4}]) \begin{bmatrix} q_{B} \\ q_{O} \end{bmatrix} = \begin{bmatrix} f_{B} \\ f_{O} \end{bmatrix}$$

$$\begin{bmatrix} q_{B} \\ q_{O} \end{bmatrix} = T_{CB} \begin{bmatrix} q_{B} \\ Q \end{bmatrix} = \begin{bmatrix} I & 0 \\ -K_{OO}^{-1}K_{OB} & \Phi_{OO} \end{bmatrix} \begin{bmatrix} q_{B} \\ Q \end{bmatrix}$$

$$T_{CB}^{T}(-\omega^{2}M + i\omega C + [K + iK_{4}])T_{CB} \begin{bmatrix} q_{B} \\ Q \end{bmatrix} = T_{CB}^{T} \begin{bmatrix} f_{B} \\ f_{O} \end{bmatrix}$$

STRAIN ENERGY DENSITY SHOWS WEAK POINTS

Strain energy density

 $U_{\rm d} = \int \sigma \epsilon \, \mathrm{d}\epsilon$

Strain energy

 $U = \iiint U_{\rm d} \, \mathrm{d}V$

Strain ϵ

Strain energy density in free-free modes

TOPOLOGY OPTIMIZATION REMOVE USELESS ELEMENTS

STRUCTURAL AND THERMAL DO NOT USE THE SAME FEM

ACOUSTIC MODELING

VIBRATION TESTING

THE MOMENT YOU KNOW WHETHER YOU SCREWED UP

THE ULTIMATE OBJECTIVE IS TO MINIMIZE RISK

Qualification

- Objective = prove that the article will survive limit loads
- Check of design
- Better to overtest than understest

Acceptance

- Objective = prove that the article is equivalent to the QM
- Check of workmanship
- Better to undertest than overtest

Each test on the FM is an additional risk (Fatigue, stochastic luck)

ELECTRODYNAMICAL SHAKER USED FOR VIBRATION TESTS

Multi-axis shaker

MGSE: MECHANICAL GROUND SUPPORT EQUIPMENT

Head expander

Slip table

Fixture IP/OOP

From: Unholtz Dickie

OUTPUT OF VIBRATION TESTING IS MEASURED BY SENSORS

RESONANCES ARE STRUCTURE-DEPENDENT, ANTIRESONANCES ARE TEST-DEPENDENT

UNOBSERVABLE OR UNCONTROLLABLE MODES ARE INVISIBLE

Resonance modes

CONTROL SENSORS SHOULD BE PLACED WITH CARE

8 triax acceleros \rightarrow

 \leftarrow 2 triax acceleros

Example: 20 modes

AUTOMAC MATRIX FOR MEASUREMENT SENSOR PLACEMENT

MI

Consider the impact of your sensor (mass, stiffness...)

Low-level sine

- Standard in the industry
- Modes only excited for a short time
- Low damping \rightarrow high g's
- Some values: 0.2 g, 0.5 g, 1 g...

Low-level random

- Standard at ASL
- Modes continuously excited
- Low g's
- Some values: 1gRMS...

Not everyone agrees on what is low-level

LOW-LEVEL AND HIGH-LEVEL BEHAVIOR MAY VARY

Success criteria:

- No visible degradation
- No untightening of screws
- Functional test

- Upper limit to frequency shift (e.g. 5%)
- Upper limit to amplitude shift (e.g. 20%)
- Compliance with frequency requirements

LOW-LEVEL TESTS ALLOW MODEL CORRELATION & UPDATING

QUASI-STATIC TESTS CHECK THE STRUCTURAL LOAD PATHS

Dedicated test

• Static load

• Burst sine

Combined test

Sine sweepRandom

$$ep \int \overline{3}, \overline{\sqrt{2}}$$

Lower than first natural frequency

$$\left(\frac{2}{3},\frac{1}{\sqrt{2}},\ldots\right)$$

Measurement at the CoG:

Time

Impact of too high sweep rate 30 30 $\mathbf{R} \neq \mathbf{0}$ $\mathbf{R} = \mathbf{0}$ 25 25 R = -4R = +4 $R \neq -1$ R = +1oct/min oct/min oct/min oct/min ed 20 Amplitude Envelope 12 12 H 15 H 15 H 10 ringing $f_k = 20 \, \text{Hz}$ $f_k = 20 \text{ Hz}$ $Q_k = 25$ $Q_k = 25$ 0 18 18 21 22 19 20 19 20 21 22 Frequency (Hz) Frequency (Hz)

Spectra contain phase information

From: ECSS-E-HB-32-26A

A RANDOM ENVELOPE MUST COVER EVERY CROSS-AXIS

ENVELOPING IS NOT COMMUTATIVE

TEST ENVELOPE COVERS QSL AND FLEXIBLE RANGES

COUPLED ANTIRESONANCES CORRESPOND TO UNCOUPLED RESONANCES

ANTIRESONANCES ARE IGNORED IN TEST ENVELOPES

REMOVING ANTIRESONANCES LEADS TO OVERTESTING

NOTCHING REINTRODUCES ANTIRESONANCES

SHOCK TESTS ARE OFTEN MADE WITH RINGING PLATE

Far-field: shaker

From: Dayton T. Brown; ESTEC; Unholtz Dickie

ACOUSTIC TESTING

Reverberant field acoustic noise testing

Direct field acoustic noise testing

THANK YOU

FEEL FREE TO ASK YOUR QUESTIONS

BONUS SLIDES

ISOLATION AIMS TO REDUCE VIBRATION LOADS

