MECA0025 - Sattelite Engineering

Space propulsion

December 4, 2024

Koen Hillewaert Design of Turbomachines and Propulsors (\dot{p}) koen.hillewaert@uliege.be

[Introduction](#page-2-0) [Classification](#page-3-0) [Thrust, acceleration and specific impulse](#page-4-0)

[Gas expansion](#page-9-0) [Principles](#page-10-0) [Thermal rockets](#page-17-0) [Solid propellant](#page-20-0) [Monopropellant liquid rocket](#page-24-0) [Bipropellant liquid rocket](#page-27-0)

[Electric propulsion](#page-35-0) **[Principles](#page-36-0)** [Gridded ion thrusters](#page-40-0) [Hall effect thrusters](#page-42-0)

[Air Breathing Electric Propulsion](#page-44-0)

Outline Introduction

[Introduction](#page-2-0) **[Classification](#page-3-0)** [Thrust, acceleration and specific impulse](#page-4-0)

[Electric propulsion](#page-35-0)

[Air Breathing Electric Propulsion](#page-44-0)

Introduction Classification - aeronautic vs space propulsion

 $Thrust = reaction to acceleration of propellant mass$

 $\mathcal{T} = \dot{m}_p(v_e - v_0)$

Aeronautics vs space propulsion

¹Very Low Earth Orbit

²Air Breathing Electric Propulsion

MECA0025 - Space propulsion devices

Introduction Thrust, acceleration and specific impulse

 \bullet thrust = reaction to acceleration of the propellant

 $\mathcal{T} = \dot{m}_e c_e$ [N]

e effective exhaust velocity

 $c_e = \frac{7}{4}$ $\frac{1}{m}$ $[m/s]$

O specific impulse: propellant mass efficiency

$$
\mathcal{I}_{sp} = \frac{\mathcal{T}}{\dot{m}g} = \frac{c_e}{g} [s]
$$

cumulative acceleration "∆v"

$$
\Delta v(t) = \int_0^t \frac{\mathcal{T}(t)}{m} dt
$$

Introduction Thrust, acceleration and specific impulse - Δv

$$
\Delta v_1 = \sqrt{\frac{GM}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2} - 1}
$$

$$
\Delta v_2 = \sqrt{\frac{GM}{r_2}} \sqrt{1 - \frac{2r_1}{r_1 + r_2}}
$$

extremely short (instantaneous) "kick" \rightarrow very high thrust **O** Launch: overcome gravity

$$
\Delta v = \int \frac{g(y) \, dy}{v}
$$

short duration \rightarrow high thrust

- \bullet deep space: long duration \rightarrow low thrust, high specific impulse
- **•** positioning and deorbiting (design for demise)

Introduction Thrust, acceleration and specific impulse - Δv

Introduction

Thrust, acceleration and specific impulse - importance of specific impulse

Payload m_l , engine m_m and propellant mass m_p

$$
m(t) = m_1 + m_m + m_p(t) \qquad \Rightarrow \qquad \frac{dm}{dt} = \frac{dm_p}{dt} = -\dot{m}_e
$$

Tsiolkowski equation

$$
m\frac{dv}{dt} = g\mathcal{I}_{sp}\dot{m}_e = -g\mathcal{I}_{sp}\frac{dm_p}{dt} = -g\mathcal{I}_{sp}\frac{dm}{dt}
$$

$$
\Rightarrow m(t) = m(0) e^{-\frac{\Delta v}{\mathcal{I}_{sp}\beta}}
$$

Propellant mass for given Δv

$$
m_{p,\Delta v} = m(0) - m(t) = m(0) \left(1 - e^{-\frac{\Delta v}{g \mathcal{I}_{sp}}}\right)
$$

high $\mathcal{I}_{\text{sn}} \rightarrow$ higher payload

Introduction Thrust, acceleration and specific impulse

Considerations for thruster choice

- which Δv ?
- \bullet over short or long time span \rightarrow low or high $\mathcal T$
- **•** how much propellant weight can we afford \rightarrow specific impulse \mathcal{I}_{sn}
- **O** single burn or multiple burns
- variation of thrust required \rightarrow can we pulse the thruster
- \bullet dry weight of the motor and its auxiliaries (e.g. reservoir, power generator)
- **•** power consumption, generation and storage

[Gas expansion](#page-9-0) [Principles](#page-10-0) [Thermal rockets](#page-17-0) [Solid propellant](#page-20-0) [Monopropellant liquid rocket](#page-24-0) [Bipropellant liquid rocket](#page-27-0)

[Electric propulsion](#page-35-0)

[Air Breathing Electric Propulsion](#page-44-0)

Gas expansion Principles - convergent-divergent nozzle

- Reservoir conditions p° , T°
- \bullet Mach number $M = v/a$
- **O** Isentropic acceleration / deceleration
	- $T = T^{\circ}/f(M)$ $p = p^{\circ}/(f(M))^{\frac{\gamma}{\gamma-1}}$
- **•** Mass flow ifo total conditions

$$
\dot{m} = \rho v A = \frac{p^{\circ} A}{\sqrt{\mathcal{R} T^{\circ}}} F(M)
$$

Gas expansion Principles - thrust generation

Thrust

$$
\mathcal{T} = \dot{m}_e v_e + (p_e - p_a) A_e
$$

$$
c_e = \frac{\mathcal{T}}{\dot{m}_e} = \underbrace{\frac{\mathcal{T}}{\rho^{\circ} A_t}}_{\mathcal{C}_{\mathcal{T}}} \underbrace{\frac{\rho^{\circ} A_t}{\dot{m}_e}}_{\mathcal{C}^*}
$$

- \bullet thrust coefficient $C_{\mathcal{T}}$: performance of nozzle;
- \bullet characteristic velocity \mathcal{C} : propellant properties and feed conditions.

Gas expansion Principles - Operation ifo altitude

In attached regime of the de Laval nozzle, *i.e.*

- **O** underexpanded
- overexpanded with oblique shocks outside nozzle

we find

$$
\mathcal{T} = \dot{m}_e v_e + (\rho_e - \rho_a) A_e \qquad \Rightarrow \qquad \mathcal{C}_{\mathcal{T}} = \frac{\mathcal{T}}{\rho^{\circ} A_t} = \left((1 + \gamma M_e^2) \frac{\rho_e}{\rho^{\circ}} - \frac{\rho_a}{\rho^{\circ}} \right) \frac{A_e}{A_t}
$$

 $C_{\mathcal{T}}$ depends on

- \bullet area ratio A_e/A_t
- pressure ratio $\textit{NPR} = \frac{p^{\circ}}{p_a}$
- \bullet heat capacity ratio γ

In separated regime $(=$ heavily overexpanded), the nozzle is "shortened" to the location of separation/shock

Gas expansion Principles - thrust coefficient

$C_{\mathcal{T}}$ depends on

- altitude, in particular nozzle pressure ratio p°/p_{a}
- nozzle geometry, in particular exit to throat area ratio A_e/A_t

Observations and consequences for launchers/space thrusters

- **•** for each altitude/pressure ratio optimal area ratio \rightarrow area ratio is compromise for launchers
- **•** maximum thrust in vacuum, increases with area ratio \rightarrow maximal area ratio for space thrusters
- **•** separation is observed up to a certain altitude/pressure ratio \rightarrow launchers: high feed pressure p° to reduce separation

Gas expansion Principles - characteristic velocity

$$
\mathcal{C}^* = \frac{\rho^{\circ} A_t}{\dot{m}_e} = \frac{\rho^{\circ} A_t}{\rho^* a^* A_t} = \frac{1}{\gamma} \frac{\rho^{\circ}}{\rho^*} \sqrt{\frac{T^*}{T^{\circ}}} \sqrt{\gamma \mathcal{R} T^{\circ}} = f(\gamma) \sqrt{\frac{\gamma \mathcal{R}^* T^{\circ}}{\mathcal{M}}}
$$

Characteristic velocity depends on

- \bullet chamber/combustion temperature T°
- \bullet molar mass M

Hence

- **O** lighter molecules have higher c_e / I_{sp} for same T°
- **•** combustion rockets: T° determined by reaction $\rightarrow C^*$ is material property

Combustion stoechiometry $=$ compromise high temperature vs low molar mass product

Gas expansion Principles - impact of molecular weight

Assuming constant $\mathcal{C}_{\mathcal{T}}$, p° and \mathcal{T}° , the molar mass $\mathcal M$ impacts

 \bullet specific impulse \rightarrow favor light gases

$$
\mathcal{I}_{\textit{sp}} = \frac{\mathcal{C}_{\mathcal{T}} \mathcal{C}^*}{g} \sim \frac{1}{\sqrt{\mathcal{M}}}
$$

 \bullet thrust to power \rightarrow favor heavy gases

$$
\frac{\mathcal{T}}{\mathcal{P}} \sim \frac{\dot{m}_e c_e}{\dot{m}_e c_e^2/2} \sim \sqrt{\mathcal{M}}
$$

 \bullet thrust to area/size \rightarrow more or less independent

$$
\frac{\mathcal{T}}{A} \sim \frac{\dot{m}_e v_e}{\dot{m}_e/\rho_e v_e} \sim \rho_e v_e^2 \sim \frac{\mathcal{M}}{\sqrt{\mathcal{M}}^2}
$$

Gas expansion Principles - impact of area ratio and feed pressure

Specific impulse variations

- $\mathcal{C}_{\mathcal{T}}$ increases with pressure ratio, *i.e.* with altitude and feed pressure p°
- \bullet \mathcal{C}_{τ} maximal and independent of feed pressure in vacuum
- characteristic velocity independent of p°
- mass flow per unit area $\sim p^{\circ}$

Launchers

- high feed pressure to maximise thrust coefficient and mass flow
- **•** area ratio is chosen via compromise over altitudes

Space thrusters

- $\mathcal{I}_{\mathsf{sp}}$ independent of feed pressure \boldsymbol{p}°
- \bullet very high area ratios to maximise $\mathcal{C}_{\mathcal{T}}$
- \bullet feed pressure determined by size / engine weight considerations

Gas expansion Thermal rockets - cold gas

- \bullet non-reacting gas: N_2 , Ar, Fr, C₃H₈
- \bullet temperature controlled high pressure reservoir
- \bullet low specific impulse \sim 50s
- thrust levels \sim 20 mN
- **•** pulsed for modulation of average thrust
- **O** precise control of position

Gas expansion Thermal rockets - thermonuclear

NASA's Nuclear Thermal Propulsion Engine System, of which BWXT is providing support for reactor and fuel design and analysis.

- **O** pressurized gas heated by nuclear reactor
- very high specific impulse $\mathcal{I}_{\text{sp}} = 500 \text{ s} \dots 900 \text{ s}$
	- low mass gases such as $H_2 \rightarrow h$ igh \mathcal{R}
	- temperature not determined by combustion
- high thrust $T \approx 100$ kN
- **O** online thrust control
- **O** currently investigated concept for space exploration, orbit insertion, ...

Gas expansion Thermal rockets - - NERVA XE

Nuclear Engine for Rocket Vehicle Application (NERVA)

- **o** research engine at NASA
- vacuum thrust $T = 246kN$
- Chamber pressure $p^{\circ} = 3.861$ MPa
- vacuum $\mathcal{I}_{\text{sp}} = 710...841$ s (SLS vs vacuum)
- **o** dry weight: 18 tonnes
- \bullet thermal power: $P = 1.1$ MW

Gas expansion Solid propellant - operation

Solid Propellant Rocket

- **•** grain: paste of premixed oxidiser and fuel
- **•** pyrotechnic start to single step burn
- **O** pressure variation depends on mass flow generated by combustion
- **The thrust variation a priori determined by grain shape**
- \bullet thermo-acoustic instabilities

Gas expansion Solid propellant - grain shape

Gas expansion Solid propellant - space shuttle booster

- propellant mass $m_p = 500$ tonne
- **e** empty mass $m_m = 91$ tonne
- \bullet τ = 15 MN
- \bullet $\mathcal{I}_{\text{SD}} = 242$ s
- **O** reusable

Gas expansion Solid propellant - apogee kick motor

Intelsat V

- $\Delta v = 2000m/s$
- payload $m_l \approx 1000$ kg
- **O** propellant mass $m_p \approx 900$ kg
- **O** engine mass $m_m \approx 1000$ kg
- \bullet $\mathcal{T} = 70$ kN during 40 s
- \bullet $\mathcal{I}_{\text{sn}} \approx 280s$

Gas expansion Monopropellant liquid rocket - Principle

- **O** operating principle
	- main propellant hydrazine N_2H_4
	- pressurized reservoir
	- pulsed expansion over regulation valve
	- decomposition over heated catalyst bed
	- decomposition products N_2 , H_2 and NH_3
- **•** can be combined with thermal heating (arcjet/resistojet)
- \bullet τ > 10N modulated during operation by pulsing
- \bullet $\mathcal{I}_{\text{SD}} \approx 200 \text{ s}$
- **•** attitude control and station keeping (geostationary)

Gas expansion Monopropellant liquid rocket - Astrium hydrazine

- \bullet $\tau = 1 N$
- \bullet $\mathcal{I}_{\text{SD}} = 210 \text{ s}$
- $\dot{m}_e = 0.44g/s$
- \bullet Burn time = 50 hours
- \bullet length = 17 cm
- $A_e/A_t = 80$
- **•** applications: small sattelites and deep space probes
	- attitude and orbit control
	- station keeping

Gas expansion Monopropellant liquid rocket - Astrium hydrazine

- \bullet $\tau = 400N$
- \bullet $\mathcal{I}_{\text{sp}} = 220s$
- Burn time : 30 minutes
- **O** Length : 32 cm
- \bullet attitude control Ariane V

Gas expansion Bipropellant liquid rocket

- **•** combustion of pressurized fuel and oxidiser
- variants
	- pressure fed
	- pump fed
- $I_{\text{sp}} = 300...400s$
- **•** applications
	- launch (pump fed)
	- kick engines (pressure fed)
	- orbit and attitude control (pressure fed)
- **•** pogo: vibrations \leftrightarrow water hammer \leftrightarrow varying feed pressure \leftrightarrow varying thrust
- **O** complex starting procedure

Gas expansion Bipropellant liquid rocket - cycles

Gas expansion Bipropellant liquid rocket - cycles

Gas expansion Bipropellant liquid rocket - mixture ratio

Mixture ratio

 \bullet oxidizer to fuel ratio

 $MR = \frac{\dot{m}_o}{\dot{m}}$ $\dot{m}_{\scriptscriptstyle f}$

- \bullet optimal MR compromises
	- high combustion temperature
	- low average molecular weight of combustion product
- (almost?) never stoechiometric \bullet

Gas expansion

Bipropellant liquid rocket - space shuttle main and raptor engine

MECA0025 - Space propulsion devices

Gas expansion

Bipropellant liquid rocket - space shuttle main engine characteristics

MECA0025 - Space propulsion devices

Gas expansion Bipropellant liquid rocket - Astrium S400

- \bullet τ = 400 N
- \bullet $\mathcal{I}_{\text{sp}} = 318 \text{ s}$
- \bullet propellants: MMH / N_2O_4
- **•** apogee orbit injection (geostationary)
- o orbit manoeuvers (deep space probes: Venus express, Artemis)

Gas expansion Bipropellant liquid rocket - Astrium S10

- \bullet $\tau = 10N$
- \bullet $\mathcal{I}_{\text{sn}} = 291s$
- **•** propellants: MMH / N_2O_4
- **O** nozzle expansion ratio : 150
- attitude/orbit control (large satellites: Arabsat)
- attitude/orbit control (deep space probes: Venus Express)

[Electric propulsion](#page-35-0) **[Principles](#page-36-0)** [Gridded ion thrusters](#page-40-0) [Hall effect thrusters](#page-42-0)

[Air Breathing Electric Propulsion](#page-44-0)

Electric propulsion Principles - particles and electromagnetic forces

Electric field generated by particle charge density ρ_a

$$
\nabla \cdot \mathbf{E} = \frac{\rho_q}{\epsilon_0} = \frac{\sum_i n_i q_i}{\epsilon_0}
$$

with n_i number density and q_i charge for particle i (electrons / ions) Electric field and potential

 $F = -\nabla V$

Lorentz force on particle with charge q in electric E and magnetic field B

 $m \frac{dv}{dt}$ $\frac{d\mathbf{r}}{dt} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$

Linear acceleration subject to electric field E

$$
m\frac{\partial v}{\partial t} = qE = -q\nabla V \qquad \Rightarrow \qquad mv \cdot \frac{\partial v}{\partial t} = -qv \cdot \nabla V \qquad \Rightarrow \qquad m\Delta \frac{v^2}{2} = -q\Delta V
$$

Particle energy expressed in eV

MECA0025 - Space propulsion devices

Electric propulsion Principles - particle and electromagnetic forces

Larmor precession: helicoidal motion subject to magnetic field

$$
\frac{\partial v_{p,\parallel}}{\partial t} = 0 \qquad \Rightarrow v_{p,\parallel}(t) = v_{p,\parallel}(0)
$$

$$
\frac{\partial v_{p,\perp}}{\partial t} = \frac{q_p}{m_p} v_{p,\perp} \times \mathbf{B} \qquad \Rightarrow v_{p,\perp}(t) = e^{i\omega_{\lambda} t} v_{p,\perp}(0)
$$

with (Larmor) frequency and radius

- frequency $\omega_{\lambda} = \frac{|q_p|B}{m_p}$
- radius $r_{\lambda} = \frac{|v_{\perp}|}{\omega_{\lambda}}$

Drift velocity: if E⊥B \rightarrow steady state velocity in equilibrium with Lorentz force

$$
\mathbf{v}_{p,d} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}
$$

Electric propulsion Principles - principles of thrusters

- \bullet ionise propellant gas
- **•** accelerate heavy ions by electrostatic field
- \bullet thrust $=$ reaction force
- \bullet thrust determined by ion flux/charge density, which is determined by
	- maximum potential difference of E-field
	- charge saturation (external E-field $=$ E-field due to charge density)

Applications : requiring very high specific impulse

- **O** orbital insertion
- **O** deorbitalisation (demise)
- **•** station keeping
- **O** deep space missions

Electric propulsion Principles - impact of atomic mass

Suppose same particle charge q, thruster potential ΔV Effective ejection speed/specific impulse

$$
v_e \leq \sqrt{\frac{2q\Delta V}{m_p}} \sim \frac{1}{\sqrt{m_p}}
$$

Thrust to power

$$
\frac{\mathcal{T}}{\mathcal{P}} \sim \frac{\dot{m} v_e}{\dot{m} v_e^2/2} \sim \frac{1}{\mathcal{I}_{sp}} \sim \sqrt{m_p}
$$

Power determines generator mass \rightarrow favor "lower" I_{sp} and therefore "heavy" gases (Xenon, Krypton, Iodine) Thrust to area: suppose charge density saturated / fixed

$$
\frac{T}{A} = \frac{\dot{m}_e}{A} v_e \sim m_p v_e^2 \sim Cte
$$

not impacted by particle mass

MECA0025 - Space propulsion devices

Electric propulsion Gridded ion thrusters - operating principle

Principle: electrostatic acceleration of ions

- upstream generation of plasma stream
- **•** screen grid removes electrons from plasma stream
- ΔV between screen and accelerator grids \rightarrow **E** \rightarrow ion acceleration
- \bullet thrust limited by
	- maximum potential difference ∆V
	- ion charge density saturation (Child-Langmuir)
- naturaliser cathode: electron flux neutralises ion flux outside to ensure thruster charge neutrality

Characteristics

- \bullet $\mathcal{I}_{\text{sn}} \approx 2000 \dots 10000 \text{ s}$ ($v_e \approx 20 \dots 100 \text{ km/s}$!)
- \bullet T ~ 10mN . 1N

Electric propulsion Gridded ion thrusters - Astrium RITA

- \bullet $\tau = 150$ mN
- $\mathcal{I}_{sp} = 4000 s$
- $P = 4kW$
- **•** propellant : Xenon
- \bullet beam voltage : $\Delta V = 1200$ V
- \bullet run time > 20000 h
- **O** thruster mass : 154 kg
- \bullet applications
	- Station keeping
	- orbit transfer
	- deep space missions

Electric propulsion Hall effect thrusters - operating principle

Principle:

- \bullet external radial magnetic field B_r between annular poles
- electrons "feel" B, while ions don't
- Larmor precession and drift confine electrons to bounce between poles and rotate fast in annular space
	- electron concentration \rightarrow axial electric field F_{\rightarrow}
	- collision w/ neutrals \rightarrow ionisation
- \bullet ions accelerated by axial electric field E_a
- \bullet no ion charge saturation due to presence of electrons \rightarrow higher flux density \rightarrow compact system
- axial migration of electrons to anode not fully understood
- **•** electrons recombine outside with ions (thruster charge neutrality)

Characteristics

- \bullet $\mathcal{I}_{sp} \approx 1000...8000$ s ($v_e \approx 10$ km/s...80 km/s)
- \bullet $\tau \sim 40$ mN \dots 5N

Electric propulsion Hall effect thrusters - Busek BHT-1500

Tentative performances (tbc ?)

- Discharge Power: 1 kW . . . 2 kW
- **•** efficiency $\sim 0.4 \dots 0.5 \rightarrow$ consumed power 2.5 kW . . . 5 kW
- **thruster Mass: 6.3 kg**
- $T = 70...180$ mN
- $I_{\text{SD}} = 1600 \dots 1860 \text{ s}$

Outline Air Breathing Electric Propulsion

[Electric propulsion](#page-35-0)

[Air Breathing Electric Propulsion](#page-44-0)

Air Breathing Electric Propulsion Hall effect thrusters - principles and challenges

Very low Earth Orbit: rarefied atmosphere

- \bullet drag \rightarrow continuous thrust required to maintain speed
- main challenge: collecting individual molecules (no continuous regime)
- **•** combination with electric propulsor
- \bullet drag \rightarrow deorbiting at end of life assured

In between aeronautic and space propulsion