Astrodynamics (AERO0024)

5. Dominant Perturbations

Gaëtan Kerschen Space Structures & Systems Lab (S3L)

 Cassini Classical Orbit Elements

 Time (UTCG):
 15 Oct 1997 09:18:54.000

 Semi-major Axis (km):
 6685.637000

 Eccentricity:
 0.020566

 Inclination (deg):
 30.000

 RAAN (deg):
 150.546

 Arg of Perigee (deg):
 230.000

 True Anomaly (deg):
 136.530

 Mean Anomaly (deg):
 134.891

Assumption of a two-body system in which the central body acts gravitationally as a point mass.

In many practical situations, a satellite experiences significant perturbations (accelerations).

These perturbations are sufficient to cause predictions of the position of the satellite based on a Keplerian approach to be in significant error in a brief time.

Different Perturbations and Importance ?

In low-earth orbit (LEO) ?

In geostationary orbit (GEO) ?

Non-Keplerian Motion

Dominant perturbations

Earth's gravity field

Atmospheric drag

Third-body perturbations

Solar radiation pressure

400 kms	1000 kms	36000 kms	
Oblateness	Oblateness	Oblateness	
Drag	Sun and moon	Sun and moon	
		SRP	

Satellite dependent !

Montenbruck and Gill, *Satellite orbits,* Springer, 2000

Fortescue et al., *Spacecraft* systems engineering, 2003

The Earth is not a Sphere...

1st Order Effect: Equatorial Bulge

Because our planet rotates, the centrifugal force tends to pull material outwards around the Equator where the velocity of rotation is at its highest:

- \Rightarrow The Earth's radius is 21km greater at the Equator compared to the poles.
- ⇒ The force of gravity is weaker at the Equator (g=9.78 m/s²) than it is at the poles (g=9.83 m/s²).

2nd Order Effect: Mountains and Oceans

Rather than being smooth, the surface of the Earth is relatively "lumpy":

⇒ There is about a 20 km difference in height between the highest mountain and the deepest part of the ocean floor.

3rd Order Effect: Internal Mass Distribution

The different materials that make up the layers of the Earth's crust and mantle are far from homogeneously distributed:

⇒ For instance, the crust beneath the oceans is a lot thinner and denser than the continental crust.

The Effect of Earth Oblateness

Keplerian Parameters				1	
	Semi-major axis [m]		6778e3		
	Eccentricity		0.0		
	Inclination [deg]		51		
Argument of perigee [deg]			0.0		
	RAAN [deg]		20		
	True anomaly [deg]		0.0		
Control	Data			-	
None	Date	Year	2010		
O Cross-Section		Month	10		
Attitude		Day	23		
orce Model		Houre	10		
Non-spherical		liautra	40		
	M	inutes	40		
Third-body Sun	Se	conds	00	-	
Third-body Sun	Simulation ti	ime [s]	5*24 * 3600		
ECI to ECEF	Integration Paran	neters	8		
Precession	Relative tole	erance	1e-13		
Polar Wandering	Absolute tole	erance	1e-13		
Simplified	Output time st	tep [s]	60		
pacecraft Properties	[ke]	4			
Mass	Mass [kg]				
Sizes (m, m	(, m) [0.3	[0.3, 0.1, 0.1]			
Cross-section to TAS [n	n~2]	0.03			
Cross-section to Sun [n	n^2]	0.03			
Drag Coefficient		4			
Reflectivity Coeffic	ient [1.2, 1.2, 1	1.2, 1.2, 1	.2, 1.2]		
Density Model	Density Paramet	ers		Gravity Model	
Harris-Priester	Harris-Priest	ter coeff.	0	Maximum Degree 2	
Jacchia /1 Jacchia-Roberts	D	ailyF10.7	155	Maximum Order 0	
	Averag	ed F10.7	155		
Measured data				Download Data	

3D

RUN!

The Effect of Earth Oblateness

The **geoid** is that equipotential surface which would coincide exactly with the mean ocean surface of the Earth, if the oceans were in equilibrium, at rest, and extended through the continents:

- \Rightarrow It is by definition a surface to which the force of gravity is everywhere perpendicular.
- ⇒ It is an irregular surface but considerably smoother than Earth's physical surface. While the latter has excursions of almost 20 km, the total variation in the geoid is less than 200 m.

The True Figure of the Earth

How to model the gravitational potential accurately ?

Mathematical Modeling

Legendre Polynomials

First introduced in 1782 by Legendre

$$P_n(x)=rac{1}{2^nn!}rac{d^n}{dx^n}(x^2-1)^n$$

n	$P_n(x)$
0	1
1	x
2	$rac{1}{2}\left(3x^2-1 ight)$
3	$rac{1}{2}\left(5x^3-3x ight)$
4	$rac{1}{8}\left(35x^4-30x^2+3 ight)$

$$rac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^\infty P_n(x)t^n$$

Legendre Polynomials Are Orthogonal

$$\int_{-1}^1 P_m(x)P_n(x)\,dx=0 \quad ext{if}\ n
eq m.$$

Let's Use Them

$$U = G \int_{body} \frac{dm}{r\sqrt{1 - 2\alpha \cos \Lambda + \alpha^2}}$$

$$\bigvee rac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^\infty P_n(x)t^n$$

$$U = \frac{G}{r} \int_{body} \sum_{l=0}^{\infty} \alpha^{l} P_{l}[\cos(\Lambda)] dm$$

Summing Up...

Geometric Method: First and Second Terms

$$U_0 = \frac{G}{r} \int dm = \frac{\mu}{r}$$
 Two-body potential

$$U_{1} = \frac{G}{r} \int \cos(\Lambda) \alpha \, dm = \frac{G}{r} \int \frac{x\xi + y\eta + z\zeta}{r^{2}} \, dm$$
$$= \frac{G}{r^{3}} \left(x \int \xi \, dm + y \int \eta \, dm + z \int \zeta \, dm \right) = 0$$

Center of mass at the origin of the coordinate frame

Geometric Method: Third Term

$$U_{2} = \frac{G}{r} \int \frac{\alpha^{2}}{2} \left(3\cos^{2} \Lambda - 1 \right) dm$$
$$= \frac{G}{2r^{3}} \int 2r'^{2} dm - \frac{G}{2r^{3}} \int 3r'^{2} \sin^{2} \Lambda dm$$
$$= \frac{G}{2r^{3}} \left(A + B + C - 3I \right)$$

$$\int 2r'^{2} dm = \int (\eta^{2} + \zeta^{2}) dm + \int (\xi^{2} + \zeta^{2}) dm + \int (\eta^{2} + \xi^{2}) dm$$
$$= A + B + C \quad \text{Moments of inertia}$$
$$\int r'^{2} \sin^{2} \Lambda \, dm = I \qquad \text{Polar moment of inertia}$$

Geometric Method: MacCullagh's Formula

$$U = \frac{Gm_{\oplus}}{r} + \frac{G}{2r^3} \left(A + B + C - 3I\right) + \dots$$

Some of the simplest assumptions are

- the ellipsoidal Earth (oblate spheroid) with uniform density (a=b>c).
- triaxial ellipsoid (a>b>c).

Geometric Method: Difficult to Go Further...

Summing up...

Philosophy of the modeling

Modeling a complex time series with sine functions

Matlab example

```
clear all;
close all
temps=[0:0.01:6];
TimeSeries=sin(2*pi*temps)-sin(3*2*pi*temps)+sin(7*2*pi*temps)-sin(11*2*pi*temps);
plot(temps,TimeSeries);pause
A=sin(2*pi*temps)';
b=TimeSeries';
x=pinv(A)*b;
FittinglSine=A*x; hold on; plot(temps, FittinglSine, 'm'); pause
A=[sin(2*pi*temps)' sin(3*2*pi*temps)'];
b=TimeSeries';
x=pinv(A)*b;
FittinglSine=A*x; hold on; plot(temps, FittinglSine, 'k'); pause
A=[sin(2*pi*temps)' sin(3*2*pi*temps)' sin(7*2*pi*temps)'];
b=TimeSeries';
x=pinv(A)*b;
FittinglSine=A*x;hold on;plot(temps,FittinglSine,'r');
```

A set of functions used to represent functions on the surface of the sphere. They are a higher-dimensional analogy of Fourier series.

So any object that looks « kindof-spherical » can be decomposed into an infinite sum of basic functions, as long as you multiply each basic function by the right coefficient

Our objective !

Spherical Trigonometry

$\cos \Lambda = \cos(90 - \phi') \cos(90 - \phi) + \sin(90 - \phi') \sin(90 - \phi) \cos(\lambda - \lambda')$

Addition Theorem for Spherical Harmonics

If
$$\cos \Lambda = \cos(90 - \phi') \cos(90 - \phi) + \sin(90 - \phi') \sin(90 - \phi) \cos(\lambda - \lambda')$$

Then,

$$P_l(\cos \Lambda) = \sum_{m=0}^{l} (2 - \delta_{0m}) \frac{(l-m)!}{(l+m)!} P_{lm}(\sin \phi) P_{lm}(\sin \phi') \cos(m(\lambda - \lambda'))$$

where
$$P_{lm}(u) = (1 - u^2)^{m/2} \frac{d}{du^m} P_n(u)$$

Associated Legendre polynomial of degree *I* and order *m*

$$U = \frac{G}{r} \int_{body} \sum_{l=0}^{\infty} \alpha^{l} P_{l}(\cos \Lambda) dm = \frac{G}{r} \int_{body} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^{l} P_{l}(\cos \Lambda) dm + P_{l}(\cos \Lambda) = \sum_{m=0}^{l} (2 - \delta_{0m}) \frac{(l-m)!}{(l+m)!} P_{lm}(\sin \phi) P_{lm}(\sin \phi') \cos(m(\lambda - \lambda'))$$

$$(\cos m\lambda \cos m\lambda' + \sin m\lambda \sin m\lambda')$$

Depends only on the satellite (r, ϕ , λ)

$$U = \frac{GM_{\bigoplus}}{r} \left\{ \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\frac{R_{\bigoplus}}{r} \right)^{l} P_{lm}(\sin \phi) \left(C_{lm} \cos m\lambda + S_{lm} \sin m\lambda \right) \right\}$$

Depends only on the Earth (ϕ', λ'): spherical harmonics

$$C_{lm} = \frac{(2 - \delta_{0m})}{M_{\oplus}} \frac{(l - m)!}{(l + m)!} \int \left(\frac{r'}{R_{\oplus}}\right)^l P_{lm}(\sin\phi') \cos m\lambda' dm$$
$$S_{lm} = \frac{(2 - \delta_{0m})}{M_{\oplus}} \frac{(l - m)!}{(l + m)!} \int \left(\frac{r'}{R_{\oplus}}\right)^l P_{lm}(\sin\phi') \sin m\lambda' dm$$

Normalization: End Result

$$U = \frac{GM_{\bigoplus}}{r} \left\{ \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\frac{R_{\bigoplus}}{r} \right)^{l} \overline{P}_{lm}(\sin \phi) \left(\overline{C}_{lm} \cos m\lambda + \overline{S}_{lm} \sin m\lambda \right) \right\}$$

$$\left\{ \bar{C}_{lm} \\ \bar{S}_{lm} \right\} = \sqrt{\frac{(l+m)!}{(2-\delta_{0m})(2n+1)(l-m)!}} \left\{ \begin{array}{c} C_{lm} \\ S_{lm} \end{array} \right\}$$

$$\bar{P}_{lm} = \sqrt{\frac{(2 - \delta_{0m})(2n + 1)(l - m)!}{(l + m)!}} P_{lm}$$

Many different expressions exist in the literature:

- \Rightarrow V=±V
- $\Rightarrow P_I^m = (-1)^m P_{Im}$
- \Rightarrow Normalized or non-normalized coefficients
- \Rightarrow Latitude or colatitude (sin ϕ or cos ϕ)
- \Rightarrow ...

Be always aware of the conventions/definitions used !

Spherical Harmonics

The degree « I » is the total number of waves. The order « m » is the number of waves in longitude. The number of waves in latitude is thus « I – m ».

Zonal Harmonics (m=0)

Each boundary is a root of the Legendre polynomial.

Figure 8-4. Zonal Harmonics. J_2 accounts for most of the Earth's gravitational departure from a perfect sphere. This band (and others) reflects the Earth's oblateness. The shading indicates regions of additional mass. The third harmonic appears similar to the J_2 from the top but is reversed for the bottom view.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

The zonal coefficients are independent of longitude (symmetry with respect to the rotation axis).

$$U = \frac{\mu}{r} \left\{ 1 + \sum_{l=2}^{\infty} \sum_{m=0}^{l} \left(\frac{R_{\oplus}}{r} \right)^{l} \overline{P}_{lm} \left[\sin \phi_{sat} \right] \left[\overline{C}_{l,m} \cos(m\lambda_{sat}) + \overline{S}_{l,m} \sin(m\lambda_{sat}) \right] \right\}$$

$$\int J_{l} = -C_{l,0}$$

$$S_{l,0} = 0 \text{ (definition)}$$

$$U = \frac{\mu}{r} \left\{ 1 + \sum_{l=2}^{\infty} \left(\frac{R_{\oplus}}{r} \right)^{l} \left[-J_{l} P_{l} \left[\sin \phi_{sat} \right] + \sum_{m=1}^{l} \overline{P}_{lm} \left[\sin \phi_{sat} \right] \left[\overline{C}_{l,m} \cos(m\lambda_{sat}) + \overline{S}_{l,m} \sin(m\lambda_{sat}) \right] \right] \right\}$$

EGM96

	Degree and Order		Normalized Gravitational Coefficients		
	n	m	\overline{C}_{nm}	\overline{S}_{nm}	
0,1 ?[2	0	484165371736E -03		
	2	1	186987635955E -09	.119528012031E-08	
	2	2	.243914352398E -05	140016683654E-05	
	3	0	.957254173792E -06		
	3	1	.202998882184E -05	.248513158716E-06	
	3	2	.904627768605E -06	619025944205E-06	
	3	3	.721072657057E -06	.141435626958E-05	
	4	0	.539873863789E -06		
	4	1	536321616971E -06	473440265853E-06	
	4	2	.350694105785E -06	.662671572540E-06	
	4	3	.990771803829E -06	200928369177E-06	
	4	4	188560802735E -06	.308853169333E-06	
	5	0	.685323475630E -07		
	5	1	621012128528E -07	944226127525E-07	
	5	2	.652438297612E -06	323349612668E-06	
	5	3	451955406071E -06	214847190624E-06	
	5	4	295301647654E -06	.496658876769E-07	
	5	5	.174971983203E -06	669384278219E-06	

36
It represents the Earth's equatorial bulge and quantifies the major effects of oblateness on orbits.

It is almost a thousand times as large as any of the other coefficients.

$$J_2 = -C_{2,0} = \sqrt{\frac{2.1.(2.2+1)}{2}} 0.4841 \times 10^{-3} = 0.001082$$

Degree a	nd Order	Normalized Gravitat		
n	m	\overline{C}_{nm}		
2	0	484165371736E -03		
2	1	186987635955E -09		
n	n	242014252208F 05		

First Zonal Harmonic: J2,0 or J2

Prolate planet: $J_2 < 0$

Calculation of the Rotational Flattening

Equilibrium of a rotating self gravitating fluidlike body (uniform density)

http://farside.ph.utexas.edu/teaching /336k/Newton/node109.html

$$\frac{R_e - R_p}{R} = \frac{5\Omega^2 R^3}{4GM}$$
 R is the mean radius

$$\frac{R_e - R_p}{R} = \frac{5(7.27 \times 10^{-5})^2 (6.37 \times 10^6)^3}{4\,6.67 \times 10^{-11}\,5.97 \times 10^{24}} = 0.0043$$

$$\frac{R_e - R_p}{R} = 0.0043 \times 6.37 \times 10^6 = 27km \, vs \, 21km$$

First Zonal Harmonic of Other Planets

Planet	\mathbf{J}_2
Mercury	60e-6
Venus	4.46e-6
Earth	1.08e-3
Moon	2.03e-4
Jupiter	1.47e-2
Saturn	1.63e-2

$$\frac{R_e - R_p}{R} = \frac{5\Omega^2 R^3}{4GM}$$

Celestial objects	Rotation period
Sun	25.379995 days (Carrington rotation) 35 days (high latitude)
Mercury	58.6462 days ^[7]
Venus	–243.0187 days ^{[7][8]}
Earth	0.99726968 days ^{[7][9]}
Moon	27.321661 days ^[10] (synchronous toward Earth)
Mars	1.02595675 days ^[7]
Ceres	0.37809 days ^[11]
Jupiter	0.4135344 days (deep interior) ^[12] 0.41007 days (equatorial) 0.41369942 days (high latitude)
Saturn	0.44403 days (deep interior) ^[12] 0.426 days (equatorial) 0.443 days (high latitude)
Uranus	-0.71833 days ^{[7][8][12]}
Neptune	0.67125 days ^{[7][12]}
Pluto	−6.38718 days ^{[7][8]} (synchronous with Charon)

Sectorial Harmonics (*I=m*)

The sectorial coefficients represent bands of longitude.

The polynomials P_{LI} are zero only at the poles.

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Sectorial Harmonics (I=m)

Sectorial harmonics preserve symmetry with respect to the equatorial plane Polynomials P_{LI} are zero only at the poles

Tesseral Harmonics (*l≠m*≠0)

Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001.

Tesseral Harmonics (*l*≠*m*≠**0)**

Determination of Gravitational Coefficients

Because the internal distribution of the Earth is not known, the coefficients cannot be calculated from their definition.

They are determined experimentally; e.g, using satellite tracking.

Satellite-to-satellite tracking: GRACE employs microwave ranging system to measure changes in the distance between two identical satellites as they circle Earth. The ranging system detects changes as small as 10 microns over a distance of 220 km. EGM-2008 has been publicly released:

- \Rightarrow Extensive use of GRACE twin satellites.
- \Rightarrow 4.6 million terms in the spherical expansion (130317 in EGM-96)
- \Rightarrow Geoid with a resolution approaching 10 km (5'x5').

Deviation of the Geoid from the idealized figure of the Earth

(difference between the EGM96 geoid and the WGS84 reference ellipsoid)

Red areas are above the idealized ellipsoid; blue areas are below.

-107.0 m

+85.4 m

Resulting Force

 $\mathbf{F} = \nabla U \text{ with } \nabla = \hat{\mathbf{r}} \frac{\partial}{\partial r} + \frac{1}{r} \hat{\mathbf{\phi}} \frac{\partial}{\partial \phi} + \frac{1}{r \cos \phi} \hat{\lambda} \frac{\partial}{\partial \lambda}$

Spherical Earth

Gravitational force acts through the Earth's center.

Oblate Earth: J2

$$\begin{cases} U = \frac{\mu}{r} \left\{ 1 + \sum_{l=2}^{\infty} \left(\frac{R_{\oplus}}{r} \right)^{l} \left[-J_{l} P_{l} \left[\sin \phi_{sat} \right] + \sum_{m=1}^{l} \overline{P}_{lm} \left[\sin \phi_{sat} \right] \left[\overline{C}_{l,m} \cos(m\lambda_{sat}) + \overline{S}_{l,m} \sin(m\lambda_{sat}) \right] \right] \right\} \\ P_{2}[\gamma] = \frac{1}{2} \left(3\gamma^{2} - 1 \right) \end{cases}$$

$$U = \frac{\mu}{r} \left\{ 1 - J_2 \left(\frac{R_{\oplus}}{r} \right)^2 \frac{3\sin^2 \phi_{sat} - 1}{2} \right\}$$
$$\nabla = \hat{\mathbf{r}} \frac{\partial}{\partial r} + \frac{1}{r} \hat{\mathbf{\phi}} \frac{\partial}{\partial \phi} + \frac{1}{r \cos \phi} \lambda \frac{\partial}{\partial \lambda}$$

Perturbation of the radial acceleration

Longitudinal acceleration that can be decomposed into an azimuth and normal accelerations

STK: Gravity Models (HPOP)

Basic	Earce Model for ISS I	HDOD						
	Torce Moder for 155_1	IPOP						
Attitude	Central Body Gravity		Drag					
Pass Br			V Use					
Mass								
Eclipse	Gravity WG	584_EGM96.grv	Select a Gravit	y Field				? 🔀
Ground	21						-	
Descript	Maximum Degree.		LOOK IN:	D Earth			≫	
Descript	Maximum Order: 21			🛅 GDALData	WGS72_ZonalsToJ4	ł		
Attributes				🛅 maps	🔊 WG584			
TimeEv	Solid Tides: Perm	nanent tide only 🚩	My Recent	🗀 nad	💌 WGS84_EGM96			
Pass	Use Ocean Tides		Documents	🗀 Pixmaps	🔊 WGS84_old			
Contours				Rf				
Range	Solar Radiation Pressure		L	Saa Saa				
Lighting	Use		Desktop	EGM96				
Swath	Model			GEGM2000				
Ground	Sphe	rical 🔽						
📮 - 3D Graphics	- Cr.	1.000000		GGM02C				
Pass	G.		My Documents	JGM2				
···· Orbit Sy	Area/Mass Ratio:	0.005 m^2/kg 🖳		💽 ЈАМЗ				
Attitude								
Vector	Shadow Model:	Dual Cone 🗸 🗸	Mu Computer					
Proximity	Use Boundary Mi	tigation	My compater	File name:	1		v (Open
Droplines		ugadon		r lie riallie.				open
····· Covaria	Third Body Gravity			Files of type:	*.grv		~	Cancel
B-Plane	Name Use	Source	My Network		Open as read-only			
Model	Sun 🔽 Ci	b file 1.3271220						
Offsets	Moon 🔽 Ci	b file 4.9028010	76000e+003 km^3/se	c^2				
Contours	Jupiter Ct	b file 1.2671276	48383e+008 km^3/se	c^2	-			
Hange	Venus Cł	b file 3.2485859	20790e+005 km^3/se	c^2				
Data D:	Saturn Cł	b file 3.7940585	36168e+007 km^3/se	c^2	~			
Vanar T		1 0000074/						
vapor 1								
Basic			More Opti	ons				
Sun			_					
Temporal				ок 🛛 🖸	Cancel Help			
Advanced								

Atmospheric forces represent the largest nonconservative perturbations acting on low-altitude satellites.

The drag is directly opposite to the velocity of the satellite, hence decelerating the satellite.

The lift force can be neglected in most cases.

Mathematical Modeling

The atmosphere co-rotates with the Earth.

$$\mathbf{v}_r = \mathbf{v} - \mathbf{\omega}_{\oplus} \times \mathbf{r}$$

 \checkmark \downarrow
Inertial Earth's angular

velocity velocity

Aerodynamic Drag Force Terms Are Uncertain

The gross behavior of the atmospheric density is well established, but it is still this factor which makes the determination of satellite lifetimes so uncertain.

There exist several models (e.g., Jacchia-Roberts, Harris-Priester).

Dependence on temperature, molecular weight, altitude, solar activity, etc.

Solar Activity

Atmospheric Density using CHAMP

An accelerometer measures the non-gravitational accelerations in three components, of which the along-track component mainly represents the atmospheric drag.

By subtracting modeled accelerations for SRP and Earth Albedo, the drag acceleration is isolated and is proportional to the atmospheric density.

CHAMP Density at 410 kms

Further Reading

Available online at www.sciencedirect.com

Planetary and Space Science 52 (2004) 297-312

Planetary and Space Science

www.elsevier.com/locate/pss

Atmospheric densities derived from CHAMP/STAR accelerometer observations

S. Bruinsma*, D. Tamagnan, R. Biancale

CNES, Department of Terrestrial and Planetary Geodesy, 18, Avenue E. Belin, Toulouse 31401, Cedex 4, France Received 29 January 2003; received in revised form 2 October 2003; accepted 21 October 2003

Static model (e.g., no variation with the 27-day solar rotation).

Interpolation determines the density at a particular time.

Simple, computationally efficient and fairly accurate.

Atmospheric Bulge

The high atmosphere bulges toward a point in the sky some 15° to 30° east of the sun (density peak at 2pm local solar time).

The observed accelerations of Vanguard satellite (1958) indicated that the air density at 665 km is about 10 times as great when perigee passage occur one hour after noon as when it occurs during the night !

Harris-Priester (120-2000km)

The modified Harris-Priester (HP) model may be considered as a middle ground between the two extremes (Harris and Priester, 1962; Long et al., 1989; Hatten and Russell, 2016). Like the Standard Atmosphere, HP relies on exponential interpolation of density between values tabulated at discrete altitudes. However, HP also uses functional dependencies to model latitudinal and diurnal effects. Further, HP may be revised to take into account varying levels of solar activity. This effect has been achieved by including a set of 10 tables, each of which corresponds to a different value of the 81-day centered average 10.7 cm solar flux index $\overline{F}_{10.7}$. Given a value of $\overline{F}_{10.7}$, an interpolation scheme, such as nearest-neighbor (Dowd and Tapley, 1979) or linear (Tolman et al., 2004), is used to calculate density values.

Thus, HP may produce significantly more accurate density values than a simple exponential atmospheric model while executing in a fraction of the time of more complex models (Montenbruck and Gill, 2001). Such balance makes HP a suitable candidate for use in preliminary studies in which a combination of high speed and reasonable accuracy is paramount. However, even in this context, the HP model is not without its deficiencies. This work addresses

Harris-Priester (120-2000km)

Account for diurnal density bulge due to solar radiation

$$\rho(h) = \rho_m(h) + \left[\rho_M(h) - \rho_m(h)\right] \cos^n\left(\frac{\psi}{2}\right)$$

Height above the Earth's reference ellipsoid

Angle between satellite position vector and the apex of the diurnal bulge

Interpolation Between Altitudes

$$\rho_m(h) = \rho_m(h_i) \exp\left(\frac{h_i - h}{H_{m_i}}\right), \quad h_i \leq h \leq h_{i+1}$$

 $\rho_M(h) = \rho_M(h_i) \exp\left(\frac{h_i - h}{H_{M_i}}\right), \quad h_i \leq h \leq h_{i+1},$

$$H_{m_i} = \frac{h_i - h_{i+1}}{\ln\left(\frac{\rho_m(h_{i+1})}{\rho_m(h_i)}\right)}$$
$$H_{M_i} = \frac{h_i - h_{i+1}}{\ln\left(\frac{\rho_M(h_{i+1})}{\rho_M(h_i)}\right)}$$

<i>h</i> [km]	ρ_m [g/km ³]	<i>Рм</i> [g/km ³]	<i>h</i> [km]	ρ_m [g/km ³]	ρ_M [g/km ³]
100	497400.0	497400.0	420	1.558	5.684
120	24900.0	24900.0	440	1.091	4.355
130	8377.0	8710.0	460	0.7701	3.362
140	3899.0	4059.0	480	0.5474	2.612
150	2122.0	2215.0	500	0.3916	2.042
160	1263.0	1344.0	520	0.2819	1.605
170	800.8	875.8	540	0.2042	1.267
180	528.3	601.0	560	0.1488	1.005
190	361.7	429.7	580	0.1092	0.7997
200	255.7	316.2	600	0.08070	0.6390
210	183.9	239.6	620	0.06012	0.5123
220	134.1	185.3	640	0.04519	0.4121
230	99.49	145.5	660	0.03430	0.3325
240	74.88	115.7	680	0.02632	0.2691
250	57.09	93.08	700	0.02043	0.2185
260	44.03	75.55	720	0.01607	0.1779
270	34.30	61.82	740	0.01281	0.1452
280	26.97	50.95	760	0.01036	0.1190
290	21.39	42.26	780	0.008496	0.09776
300	17.08	35.26	800	0.007069	0.08059
320	10.99	25.11	840	0.004680	0.05741
340	7.214	18.19	880	0.003200	0.04210
360	4.824	13.37	920	0.002210	0.03130
380	3.274	9.955	960	0.001560	0.02360
400	2.249	7.492	1000	0.001150	0.01810

Mean solar activity

Atmospheric Bulge Position

Spacecraft
position (ECI)
$$\cos^{n}\left(\frac{\psi}{2}\right) = \left(\frac{1}{2} + \frac{\mathbf{r}^{T}\mathbf{u}_{b}}{2r}\right)^{\frac{n}{2}}$$

Unit vector toward the apex of the diurnal bulge in ECI coordinates

$$\boldsymbol{u}_{b} = \begin{pmatrix} \cos(\delta_{s})\cos(\alpha_{s} + \lambda_{lag}) \\ \cos(\delta_{s})\sin(\alpha_{s} + \lambda_{lag}) \\ \sin(\delta_{s}) \end{pmatrix} \xrightarrow{} \text{Lag}$$
Sun declination Sun right ascension

STK – Atmospheric Models (HPOP)

Elle Edit View Insert Loois Sat	tellite Window Feedback Help		_ 8 ×			
Sa a2 □ ≪ - 56 A6 X	Force Model for ISS					
	Central Body Gravity	Drag				
G O 🗵 🖉 🖓 🖓 🖓		Vise	£ CC ୭ ୭ € ♥ ♥ \$ Ø			
X 🥺 🚇 🛃 🏢	Gravity WG584_EGM96.grv	cd: 2,200000	——— E			
Object Browser 🛛 🔀	Musicum Damas 21					
EScenario1		Area/Mass Ratio: U.U2 m^2/kg	Initial State Tool			
····· 🔆 155	Maximum Order: 21	Atm. Density Model Jacchia-Roberts 💌				
	Solid Tides: Permanent tide only 💌	SolarElux (GeoMag				
	🗖 Use Ocean Tides	Jacchia 1970 Jacchia 1971				
	- Solar Radiation Pressure	NRLMSISE 2000				
		MSISE 1990 MSIS 1986				
	C:: 1.000000	Average F10.7: Jacchia 1960 Jacchia-Roberts				
		Geomagnetic Index (Kp): CIRA 1972	14 km 👜			
	Area/Mass Ratio: 0.02 m^2/kg 🕎					
	Shadow Model: Dual Cone 💌					
	Use Boundary Mitigation					
	Third Darks Creative		<u></u>			
	Name Use Source	Gravity Value 122000000e+011 km/3/sec/2				
	Moon V Cb file 4.902	802953597e+003 km^3/sec^2	<u></u>			
	Jupiter Cb file 1.267	127678578e+008 km^3/sec^2				
	Venus 🔽 Cb file 3.248	585920790e+005 km^3/sec^2				
	Saturn Cb file 3.794	062606114e+007 km^3/sec^2				
		More Options	~			
OK Cancel Help						
LaunchPad 3D Graphic 1 2D Graphic 1 2D Graphic 1 20 Graph						

STK – Solar Activity (HPOP)

⊫Basic	^					
····· Orbit		Force Model for ISS_HPOP				
Attitude		Cashad Bada Casaiba				
Pass Br		Central Body Gravity	ay			
Mass			Use			
Eclipse		Gravity WGS84_EGM96_dry	2.070000			
Referen			2.070000			
Ground		Maximum Degree: 21	Area/Mass Ratio: 0.005 m^2/kg			
Descript		21				
🖨 2D Graphics		Maximum Order: 21	Atm. Density Model: Harris-Priester 💙			
Attributes		Solid Tides: Permanent tide only 🗸	eduction to a			
TimeEv			SolarFlux/GeoMag			
Pass			Enter Manu ally, 😒			
Contours		Solar Radiation Pressure	Daily E10.7: 150.0000000			
Range						
····· Lighting			Average F10.7: 150.00000000			
Swath	Ξ					
····· Ground			Geomagnetic Index (Kp): 3.0000000			
Graphics		Cr: 1.000000				
Pass		Area/Marc Dation 0.005 m^2/kg 📖				
Urbit Sy						
Attitude			Eclipsing Bodies			
Vector		Shadow Model: Dual Cone 💙				
Proximity		Use Boundary Mitigation				
Droplines						

For an Earth-orbiting satellite, the Sun and the Moon should be modeled for accurate predictions.

Their effects become noticeable when the effects of drag begin to diminish.

STK: Third-Body Gravity (HPOP)

🗱 Scenario1 - STK 8 - [OUFTI-1 : Basic Orbit]					
File Edit View Insert Tools Satellite Window Feedback Help	_ 문 🗙 Tapez une question 🗸				
24 26 2. (*) 27 4 3 14 28 × 49 (2, Q, Q, Q) 21 4	Force Model for OUFTI-1				
3 0 x 0 0 0 x 0 0 x 0 x 0 0 x 0 x 0 0 x 0 x 0 0 x	2007 Central Body Gravity				
Object Browser	Gravity WG584_EGM96.grv Cd: 2.200000				
Scenario1	Maximum Degree: 21 Area/Mass Ratio: 0.02 m^2/kg 🕎				
Pass Break	Maximum Order: 21 Atm. Density Model: Jacchia-Roberts				
Mass Eclipse Box Start Time: 1 Jul 2007 12:00:00.000 UTCG	Solid Tides: Permanent tide only SolarFlux/GeoMag				
Reference Stop Time: 2 Jul 2007 12:00:00.000 UTCG	Enter Manually				
Description Step Size: 60 sec	Solar Radiation Pressure Daily F10.7: 150.00000000 ▼ Use				
Attributes TimeFivent: Orbit Epoch: 1 Jul 2007 12:00:00.000 UTCG	Average F10.7: 150.00000000				
Pass Coord Epoch: 1 Jan 2000 11:58:55.816 UTCG	Geomagnetic Index (Kp): 3.00000000				
Range Coord Type: Classical	Shadow Model: Dual Cone 💌				
Swath Coord System: J2000	Use Boundary Mitigation				
	Third Body Gravity				
Prop Specific: Force Models	Hame Use Source Gravity Value				
Image: Attitude Sp Integrator Image: Attitude Sp Integrator	Suit Come 1.3271220000064011 km 038c 2 Moon Image: Come 4.902802953597e+003 km^3/sec^2				
Covariance Covariance	Jupiter □ Cb file 1.267127678578e+008 km^3/sec^2 Venus □ Cb file 3.248585920790e+005 km^3/sec^2				
Service Covariance B-Plane	Saturn Cb file 3.794062606114e+007 km^3/sec^2				
Model Transformer State	Manufactor				
	OK Cancel Help				
LaunchPad) 💮 3D Graphic 🞽 2D Graphic 🛗 OUFTI-1 : B					
UFTI-1 (23.119,-104.862) 1 Jul 2007 12:00:00.000 Time Step: 60.00 sec					

It produces a nonconservative perturbation on the spacecraft, which depends upon the distance from the sun.

It is usually very difficult to determine precisely.

It is NOT related to solar wind, which is a continuous stream of particles emanating from the sun.

800km is regarded as a transition altitude between drag and SRP.

Mathematical Modeling

$$\mathbf{F}_{\mathrm{SR}} = -p_{\mathrm{SR}}c_{\mathrm{R}}A\mathbf{e}_{\mathrm{sc/sun}}$$

$$p_{SR} = \frac{1350 \text{ W/m}^2}{3e8 \text{ m/s}} = 4.51 \times 10^{-6} \text{ N/m}^2$$

The reflectivity c_R is a value between 0 and 2:

- 0: translucent to incoming radiation.
- 1: all radiation is absorbed (black body).
- 2: all radiation is reflected.

The incident area exposed to the sun must be known. The normals to the surfaces are assumed to point in the direction of the sun (e.g., solar arrays).

Mathematical Modeling: Eclipses

STK: Solar Radiation Pressure (HPOP)

Scenario1 - STK 8 - [OUFTI-1 : Basic Orbit]	
Eile Edit View Insert Iools Satellite Window Feedback Help	_ 문 X Tapez une question •
🏔 📽 🖬 🗶 ▾ ቆ 🗛 X ங @ X 🗇 Q, Q, @ 🛝 🖑 🗒 📾 [8]	Force Model for OUFTI-1
Elle Edt View Insert Tools Satellite Window Feedback Help Image: Statellite Window Feedback Image: Statellite Window Feedb	Force Model for OUFTI-1 Central Body Gravity Gravity Mossade EGM96.grX Maximum Degree: 21 Maximum Order: 21 Solar Radiation Pressure 0.02 m^2/kg P V Use 0.02 m^2/kg P Solar Radiation Pressure Enter Manually I Daily P10.7: 150.00000000 Area/Mass Ratio: 0.02 m^2/kg P Daily P10.7: 150.00000000 Area/Mass Ratio: 0.02 m^2/kg P Shadow Model: Dual Cone Use Boundary Mitigation Index (kp): Third Body Gravity Index Maximum Vicit Diffie 1.32271220000000000 Area/Mass Ratio: 0.02 m^2/kg Shadow Model: Dual Cone Use Boundary Mitigation Index (kp): Third Body Gravity Index Maximum Or do file 1.3271220000080000111 km*3/sec*2 Jupter Ch file 1.3271220000080km*3/sec*2 Jupter Ch file 3.248585920790e+005 km*3/sec*2 Jupter Ch file 3.248585920790e+005 km*3/sec*2 Saturn Ch file 3.7940626008114e+007 km*3/sec*2
📕 LaunchPad 🌑 3D Graphic 🟋 2D Graphic 🎬 OUFTI-1 : B	
OUFTI-1 (23.119,	04.862) 1 Jul 2007 12:00:00.000 Time Step: 60.00 sec

STK: Shadow Models (HPOP)

For	ce Model for	Satell	ite1				×
-G	Central Body Gravity			Drag Vuse			
G	ravity	WGS	84_EGM96.grv		Cd:	2.200000	_
м	aximum Degree	21			Area/Mass Ratio:	0.02 m^2/kg	Ψ.
м	aximum Order:	21			Atm. Density Model:	Jacchia-Roberts	•
S	olid Tides: _	Perm	anent tide only 💌		SolarFlux/GeoMag		
	Use Ocean Tides				Enter Manually 💌		
	olar Radiation P -	ressure			Daily F10.7:	150.0000000	
•	 Use 		1.000000	-	Average F10.7:	150.00000000	
	Cr: 1.000000		-	Geomagnetic Index (Kp)	3.0000000		
	Area/Mass Ra	atio:	0.02 m^2/kg				
	Shadow Mode	el: I	Dual Cone 📃				
	🗌 Use Boun	dary Mil	Cylindrical Dual Cone				
LI	hird Body Gravit	v ——					
	Name	Use	Source		Gravity Value		~
	Sun	◄	Cb file	1.327122000000e+011 km^3/sec^2			
	Moon	\checkmark	Cb file	4.902802953597e+003 km^3/sec^2			
	Jupiter		Cb file	1.267127678578e+008 km^3/sec^2			
	Venus		Cb file	3.248585920790e+005 km^3/sec^2			
	Saturn		Cb file	3.7940	62606114e+007 km^3/sec^2		✓
					More Options	7	
					ОК	Cancel H	lelp

STK: Central Body Pressure (HPOP)

🗱 Scenario1 - STK 8 - [Satellite1	: Basic Orbit]		
Eile Edit View Insert Tools Sat	ellite Window Feedback Help		
	Force Model for Satellite1		Force Model Options - Satellite1
00 2 0 4 0 5	Central Body Gravity	Drag V Use	Drag
Chiect Browser □- ¹ Scenario1	Gravity WGS84_EGM96.grv Maximum Degree: 21	Cd: Area/Mass Ratio:	Use Approximate Altitude Satellite Mass: 1000 kg Use Apparent Sun Position Include Relativistic Accelerations
Satellite1	Maximum Order: 21	Atm. Density Model:	Solar Radiation Pressure
	Solid Tides: Permanent tide only 💌	SolarFlux/GeoMag	Method to Compute Sun Position: Apparent To True CB Atmospheric Altitude for the shape 0 km
	Solar Radiation Pressure ✓ Use Cr: 1.000000 Area/Mass Ratio: 0.02 m^2/kg Shadow Model: Dual Cone ✓ Use Boundary Mitigation Third Body Gravity Name Use Pluto Cb file	Daily F10.7: Average F10.7: Geomagnetic Index (Kp): Gravity Value 3076000000e+003 km^3/sec^2	of the central body for Eclipse: Solid Tides Include Time Dependent Solid Tides Maximum Degree: 4 Maximum Order: 4 Minimum Amplitude: 0 m Propagator Plugin Plugin Settings Plugin Name:
	Charon Cb file 1.087 Phobos Cb file 7.093 Deimos Cb file 1.588	1026000000e+002 km^3/sec^2 339900000e-004 km^3/sec^2 3174000000e-004 km^3/sec^2 More Options OK	Central Body Radiation Pressure Include Albedo Ck: 1000000 Include Thermal Area to Mass Ratio: 002 m^2/k g Ground Reflection Model File: SimpleReflectionModel.txt OK Cancel Help

S3L Propagator

Keplerian Parameters	;				
		Semi-major axis [m]		6778e3	
		Eccentricity		0.0	
		Inclination [deg]		51	
	Argu	Argument of perigee [deg]		0.0	
		RAAN [deg]		20	
		True anomaly [deg]		0.0	
Operatural	Det				
Control	Date	•	Year	2010	
Cross-Section			Month	10	
 Attitude 			Dav	22	
Force Model			Uay	23	
Non-spherical			Hours	19	
Drag		м	inutes	40	
Third-body Sun		Se	conds	00	
Third-body Sun		Simulation ti	me [s]	5*24 * 3600	
ECI to ECEF	Inte	gration Param	neters	s	
Precession		Relative tole	rance	1e-13	
Polar Wandering		Absolute tole	rance	1e-13	
Simplified		Output time st	ep [s]	60	
Spacocraft Droportion					-
	ass [kg]		4		
Sizes [n	m, m, m]	[0.3	, 0.1, 0.1	1	
Cross-section to TA	S [m^2]		0.03		
Cross-section to Su	un [m^2]	[m^2] 0.03			
Drag Coe	fficient 4				
Reflectivity Coe	efficient	[1.2, 1.2, 1	.2. 1.2. 1	.2. 1.21	
		isity Paramet	ers		Gravity Model
Density Model	Der	isity i aramet		0	Maximum Dear
Density Model Harris-Priester Jacchia 71	Der	Harris-Priest	er coeff. ailvF10 7	0	Maximum Degr
Density Model Harris-Priester Jacchia 71 Jacchia-Roberts	Der	Harris-Priest Di Averagi	er coeff. ailyF10.7 ed F10.7	0 155 155	Maximum Degr Maximum Orc

RUN!

STK: Different Propagators

What is the Highest Point on Earth ?

What is the Highest Point on Earth?

Mount Chimborazo (6310 m), located in Ecuador, may be considered as the highest point on Earth. It is the spot on the surface farthest from the Earth's center.

6384.4 km (Chimborazo) vs. 6382.3 km (Everest)

Astrodynamics (AERO0024)

5. Dominant Perturbations

Gaëtan Kerschen Space Structures & Systems Lab (S3L)

 Cassini Classical Orbit Elements

 Time (UTCG):
 15 Oct 1997 09:18:54.000

 Semi-major Axis (km):
 6685.637000

 Eccentricity:
 0.020566

 Inclination (deg):
 30.000

 RAAN (deg):
 150.546

 Arg of Perigee (deg):
 230.000

 True Anomaly (deg):
 136.530

 Mean Anomaly (deg):
 134.891